A novel study that focuses on the capacity of vegetation to provide shelter for fish species under hydropeaking regimes is presented. Two artificial patches mimicking the structure and density of Carex sp. mats were installed in an experimental flume to test whether submerged plants can offer flow refuge to two cyprinid species, Luciobarbus bocagei and Pseudochondrostoma polylepis, under baseflow and hydropeaking scenarios. Local flow fields were characterized using a Lateral Line Probe (LLP) and an Acoustic Doppler Velocimeter (ADV) and 33 h of video analysis were viewed to report, on a per-second basis, fish use of 1) patches with plants, 2) patches upstream and 3) downstream from vegetation and 4) patches without vegetation. Data on flow fields and fish patch use were integrated and analyzed to assess whether plants favored fish sheltering behavior. Vegetation created hydraulically stable areas suitable for fish to shelter, triggering changes in fish patch use. Although both species sheltered under hydropeaking, L. bocagei presented a stronger preference than P. polylepis for vegetated patches and areas downstream from plants, taking advantage of sheltered regions more frequently. P. polylepis weaker search for shelter could be related to species-specific factors and territorial behavior interferences rather than to fish performance relative to flume hydraulic conditions. Despite a weaker response, some P. polylepis individuals used patches downstream from plants more during the second half of the hydropeaking trials. A trade-off between reducing swimming effort and territoriality might explain this response. Results indicate that vegetation can help to counterbalance the impact of hydropeaking on fish while providing river functioning benefits. Evaluating fish sheltering to a wide set of river plants and patch designs on a species-by-species basis would help targeting vegetation-based actions for restoring hydropeaking rivers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.145339 | DOI Listing |
J Agromedicine
January 2025
ICAR, Central Marine Fisheries Research Institute, FRAEED, Ernakulam, India.
Objective: Marine fishing ranks among the most hazardous occupations globally, with risks intensifying for small-sized vessels venturing deeper into the sea due to the scarcity of near-shore fish and high market demand. This study identifies various occupational hazards and the use of safety equipment among small-scale motorized fishers using traditional fishing methods in the southernmost coastal regions of India.
Methods: The primary data were collected from 253 artisanal small-scale motorized fishers through a multi-stage stratified random sampling method.
Unlabelled: Strain-level variation among host-associated bacteria often determines host range and the extent to which colonization is beneficial, benign, or pathogenic. is a beneficial symbiont of the light organs of fish and squid with known strain-specific differences that impact host specificity, colonization efficiency, and interbacterial competition. Here, we describe how the conserved global regulator, H-NS, has a strain-specific impact on a critical colonization behavior: biofilm formation.
View Article and Find Full Text PDFOur understanding of the vertebrate immune system is dominated by a few model organisms such as mice. This use of a few model systems is reasonable if major features of the immune systems evolve slowly and are conserved across most vertebrates, but may be problematic if there is substantial macroevolutionary change in immune responses. Here, we present a test of the macroevolutionary stability, across 15 species of jawed fishes, of the transcriptomic response to a standardized immune challenge.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States of America.
Matrix population models are essential tools in conservation biology, offering key metrics to guide species management and conservation planning. However, the development of these models is often limited by insufficient life history data, particularly for non-charismatic species. This study addresses this gap by using life history data from FishBase and the FishLife R package, complemented by size-dependent natural mortality estimates, to parameterize age-structured matrix population models applicable to most fish species.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
In this study, we attempt to illustrate fossil vertebrate dental tissue geochemistry and, by inference, its extent of diagenetic alteration, using quantitative, semi-quantitative and optical tools to evaluate bioapatite preservation. We present visual comparisons of elemental compositions in fish and plesiosaur dental remains ranging in age from Silurian to Cretaceous, based on a combination of micro-scale optical cathodoluminescence (CL) observations (optical images and scanning electron microscope) with minor, trace and rare earth element (REE) compositions (EDS, maps and REE profiles), as a tool for assessing diagenetic processes and biomineral preservation during fossilization of vertebrate dental apatite. Tissue-selective REE values have been obtained using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), indicating areas of potential REE enrichment, combined with cathodoluminescence (CL) analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!