Euglena gracilis is a unicellular organism that swims by beating a single anterior flagellum. We study the nonplanar waveforms spanned by the flagellum during a swimming stroke and the three-dimensional flows that they generate in the surrounding fluid. Starting from a small set of time-indexed images obtained by optical microscopy on a swimming Euglena cell, we construct a numerical interpolation of the stroke. We define an optimal interpolation (which we call synthetic stroke) by minimizing the discrepancy between experimentally measured velocities (of the swimmer) and those computed by solving numerically the equations of motion of the swimmer driven by the trial interpolated stroke. The good match we obtain between experimentally measured and numerically computed trajectories provides a first validation of our synthetic stroke. We further validate the procedure by studying the flow velocities induced in the surrounding fluid. We compare the experimentally measured flow fields with the corresponding quantities computed by solving numerically the Stokes equations for the fluid flow, in which the forcing is provided by the synthetic stroke, and find good matching. Finally, we use the synthetic stroke to derive a coarse-grained model of the flow field resolved in terms of a few dominant singularities. The far field is well approximated by a time-varying Stresslet, and we show that the average behavior of Euglena during one stroke is that of an off-axis puller. The reconstruction of the flow field closer to the swimmer body requires a more complex system of singularities. A system of two Stokeslets and one Rotlet, that can be loosely associated with the force exerted by the flagellum, the drag of the body, and a torque to guarantee rotational equilibrium, provides a good approximation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.103.023102 | DOI Listing |
Stroke
January 2025
Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (M.T., T.N., S.A., H.M.).
Background: Synthetic magnetic resonance imaging (MRI) is an innovative MRI technology that enables the acquisition of multiple quantitative values, including T1 and T2 values, proton density, and myelin volume, in a single scan. Although the usefulness of myelin measurement with synthetic MRI has been reported for assessing several diseases, investigations in patients with stroke have not been reported. We aimed to explore the utility of myelin quantification using synthetic MRI in predicting outcomes in patients with acute ischemic stroke.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America.
A new nuclear Overhauser enhancement (NOE)-mediated saturation transfer MRI signal at -1.6 ppm, potentially from choline phospholipids and termed NOE(-1.6), has been reported in biological tissues at high magnetic fields.
View Article and Find Full Text PDFBiomedicines
December 2024
Laboratory of Human Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia.
Ischemic stroke results from a disruption of cerebral blood flow. Adrenocorticotropic hormone (ACTH) serves as the basis for the creation of synthetic peptides as neuroprotective agents for stroke therapy. Previously, using RNA-Seq we first revealed differential expressed genes (DEGs) associated with ACTH(4-7)PGP (Semax) and ACTH(6-9)PGP peptides under cerebral ischemia conditions.
View Article and Find Full Text PDFBackground: As a key inflammatory factor, the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in neuroinflammation and the progression of neurodegenerative diseases. Dysregulation of NLRP3 signaling can trigger various inflammatory responses in the brain, contributing to the development of neurodegenerative diseases such as ischemic stroke, vascular dementia (VaD), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Therefore, the NLRP3 signaling pathway is a promising therapeutic target for the treatment of neurodegenerative diseases, including VaD.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Objective: This study aimed to assess the feasibility of the deep learning in generating T2 weighted (T2W) images from diffusion-weighted imaging b0 images.
Materials And Methods: This retrospective study included 53 patients who underwent head magnetic resonance imaging between September 1 and September 4, 2023. Each b0 image was matched with a corresponding T2-weighted image.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!