We perform small angle neutron scattering on ultralow-crosslinked microgels and find that while in certain conditions both the particle size and the characteristic internal length scale change in unison, in other instances this is not the case. We show that nonuniform deswelling depends not only on particle size, but also on the particular way the various contributions to the free energy combine to result in a given size. Only when polymer-solvent demixing strongly competes with ionic or electrostatic effects do we observe nonuniform behavior, reflecting internal microphase separation. The results do not appreciably depend on particle number density; even in concentrated suspensions, we find that at relatively low temperature, where demixing is not very strong, the deswelling behavior is uniform, and that only at sufficiently high temperature, where demixing is very strong, does the microgel structure change akin to internal microphase separation.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.103.022614DOI Listing

Publication Analysis

Top Keywords

ultralow-crosslinked microgels
8
particle size
8
internal microphase
8
microphase separation
8
temperature demixing
8
demixing strong
8
internal
4
internal structure
4
structure ultralow-crosslinked
4
microgels uniform
4

Similar Publications

We perform small angle neutron scattering on ultralow-crosslinked microgels and find that while in certain conditions both the particle size and the characteristic internal length scale change in unison, in other instances this is not the case. We show that nonuniform deswelling depends not only on particle size, but also on the particular way the various contributions to the free energy combine to result in a given size. Only when polymer-solvent demixing strongly competes with ionic or electrostatic effects do we observe nonuniform behavior, reflecting internal microphase separation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!