We study the effect of gravity on spatiotemporal flame front dynamics in a Hele-Shaw cell from the viewpoint of complex networks. The randomness in flame front dynamics significantly increases with the gravitational level when the normalized Rayleigh number R_{a} is negative. This is clearly identified by two network entropies: the flame front network entropy and the transition network entropy. The irregular formation of large-scale wrinkles driven by the Rayleigh-Taylor instability plays an important role in the formation of high-dimensional deterministic chaos at R_{a}<0, resulting in the increase in the randomness of flame front dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.103.022218 | DOI Listing |
Front Chem
December 2024
School of the Environment and Safety Engineering (School of the Emergency Management), Jiangsu University, Zhenjiang, China.
In this paper, we report a novel method for enhancing the flame retardancy of wood-based paper by utilizing natural biomaterials. The research constructed a bilayered structure coating on paper fiber surfaces, incorporating mixed starch (MS), adenosine triphosphate (ATP), and phytic acid (PA) as natural bio-based flame retardants. The structural configuration of the coating comprises MS/ATP and MS/PA, which were sequentially assembled as bottom and top parts, respectively, through pneumatic spraying.
View Article and Find Full Text PDFFront Public Health
January 2025
The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
Background: The association between brominated flame retardants (BFRs) and periodontitis has remained unclear.
Methods: This research included adult participants from NHANES cycles 2009-2014. Survey-weighted generalized linear regressions were used to explore the associations between BFR exposure and periodontitis.
Sci Rep
December 2024
College of Safety Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
In order to promote low-carbon sustainable development in the ecological environment and improve the efficiency of hydrogen and natural gas energy utilization, this project carried out research on the explosive effects of different thicknesses of ordered porous media on the hydrogen-methane gas mixture. A detailed discussion was conducted based on the critical quenching hydrogen blending ratio under the thicknesses of 50 mm and 60 mm of ordered porous media. The results indicate that the critical quenching hydrogen blending ratio is 9% for a thickness of 50 mm and 20% for a thickness of 60 mm, indicating that greater thickness enhances flame suppression capabilities.
View Article and Find Full Text PDFFront Artif Intell
December 2024
HPC Laboratory, Department of Engineering and Geology, University "G. d'Annunzio" Chieti-Pescara, Pescara, Italy.
The construction industry is rapidly adopting Industry 4.0 technologies, creating new opportunities to address persistent environmental and operational challenges. This review focuses on how Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) are being leveraged to tackle these issues.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China.
The rapid flame annealing (FA) method has the advantages of convenience and rapidity with an instantaneous temperature rise and fall process. In this work, the influence of flame annealing duration on the front side and back side of CuBiO-based photocathodes was investigated, and photoelectrodes with variable compositions were obtained. A highly efficient CuO@CuO/CuBiO photoelectrode was successfully obtained via a two-step FA method within a few seconds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!