Background: Dysregulation of metabolic regulatory hormones often occurs during the progress of obesity. Key regulatory hormone insulin-growth hormone (GH) balance has recently been proposed to maintain metabolism profiles. Time-restricted feeding (TRF) is an effective strategy against obesity without detailed research on pulsatile GH releasing patterns.

Methods: TRF was performed in an over-eating melanocortin 4 receptor-knockout (MC4RKO) obese mouse model using normal food. Body weight and food intake were measured. Series of blood samples were collected for 6-h pulsatile GH profile, glucose tolerance test, and insulin tolerance test at 5, 8, and 9 weeks of TRF, respectively. Indirect calorimetric recordings were performed by the Phenomaster system at 6 weeks for 1 week, and body composition was measured by nuclear magnetic resonance spectroscopy (NMR). Substrate- and energy metabolism-related gene expressions were measured in terminal liver and subcutaneous white adipose tissues.

Results: TRF increased pulsatile GH secretion in dark phase and suppressed hyperinsulinemia in MC4RKO obese mice to reach a reduced insulin/GH ratio. This was accompanied by the improvement in insulin sensitivity, metabolic flexibility, glucose tolerance, and decreased glucose fluctuation, together with appropriate modification of gene expression involved in substrate metabolism and adipose tissue browning. NMR measurement showed that TRF decreased fat mass but increased lean mass. Indirect calorimeter recording indicated that TRF decreased the respiratory exchange ratio (RER) reflecting consumption of more fatty acid in energy production in light phase and increased the oxygen consumption during activities in dark phase.

Conclusions: TRF effectively decreases hyperinsulinemia and restores pulsatile GH secretion in the overeating obese mice with significant improvement in substrate and energy metabolism and body composition without reducing total caloric intake.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000515960DOI Listing

Publication Analysis

Top Keywords

mc4rko obese
12
obese mice
12
time-restricted feeding
8
insulin-growth hormone
8
hormone balance
8
substrate energy
8
energy metabolism
8
glucose tolerance
8
tolerance test
8
body composition
8

Similar Publications

Inactivating mutations in the melanocortin 4 receptor () gene cause monogenic obesity. Interestingly, female patients also display various degrees of reproductive disorders, in line with the subfertile phenotype of MC4RKO female mice. However, the cellular mechanisms by which MC4R regulates reproduction are unknown.

View Article and Find Full Text PDF

Daisaikoto improves fatty liver and obesity in melanocortin-4 receptor gene-deficient mice via the activation of brown adipose tissue.

Sci Rep

June 2022

Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.

Melanocortin 4 receptor gene-knockout (MC4R-KO) mice are known to develop obesity with a high-fat diet. Meanwhile, daisaikoto, one of Kampo medicines, is a drug that is expected to have therapeutic effects on obesity. Here, we report the efficacy of daisaikoto in MC4R-KO mice.

View Article and Find Full Text PDF

Background: Dysregulation of metabolic regulatory hormones often occurs during the progress of obesity. Key regulatory hormone insulin-growth hormone (GH) balance has recently been proposed to maintain metabolism profiles. Time-restricted feeding (TRF) is an effective strategy against obesity without detailed research on pulsatile GH releasing patterns.

View Article and Find Full Text PDF

Obese individuals often show low growth hormone (GH) secretion, which leads to reduced lipid mobilization and further fat accumulation. Pharmacological approaches to increase GH levels in obese individuals by GH injection or GH-releasing hormone receptor agonist showed promising effects on fat reduction. However, side effects on glucose metabolism and the heavy costs on making large peptides hindered their clinical application.

View Article and Find Full Text PDF
Article Synopsis
  • Nonalcoholic steatohepatitis (NASH) is linked to serious liver conditions like cirrhosis and liver cancer, and this study explores how certain diabetes drugs might help treat it.
  • Using a mouse model that mimics obesity and insulin resistance, researchers tested the DPP-4 inhibitor anagliptin, which showed promising results in preventing liver inflammation and cancer without significantly impacting body weight or overall metabolism.
  • The study suggests that anagliptin works by targeting macrophage activation in the liver, indicating that its benefits for NASH and liver cancer occur independently of its effects on glucose metabolism.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!