Improving carvacrol bioaccessibility using core-shell carrier-systems under simulated gastrointestinal digestion.

Food Chem

Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK. Electronic address:

Published: August 2021

The impact of encapsulating carvacrol in chitosan-albumin based core-shell nano-carriers (NCs) on its stability and bioaccessibility was determined under simulated digestion conditions. These NCs consisted of chitosan (C) core enclosed by bovine serum albumin (BSA) shell. The mean particle size ranged from 52.4 ± 10 nm to 203 ± 6 nm and zeta-potential from + 21 ± 3.6 to -18 ± 2.7 mV. The size and charge were significantly modified after the protein-shell formation around the polysaccharide-core. Core-shell NCs were more stable, with less aggregation under simulated gastrointestinal conditions than C-NCs, presumably due to greater steric repulsion. Likewise, core-shell NCs were observed relatively more stabilized in the intestinal phase than gastric phase. The bioaccessibility of carvacrol was enhanced significantly when it was encapsulated in the core-shell NCs. These findings imply that C-BSA based core-shell NCs might be an efficient means of encapsulating, protecting and delivering hydrophobic bioactive compounds for applications in functional foods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2021.129505DOI Listing

Publication Analysis

Top Keywords

core-shell ncs
16
simulated gastrointestinal
8
based core-shell
8
core-shell
6
ncs
6
improving carvacrol
4
carvacrol bioaccessibility
4
bioaccessibility core-shell
4
core-shell carrier-systems
4
carrier-systems simulated
4

Similar Publications

Article Synopsis
  • Understanding how AgInS nanoparticles grow can enhance the design and application of I-III-VI nanomaterials in fields like photonics and optoelectronics.
  • Using specific chemical precursors and controlled environments, researchers synthesized different structures of AgInS nanoparticles through one-pot methods, revealing unique growth mechanisms depending on the reaction conditions.
  • The research showed that the photoluminescence quantum yield (PLQY) of certain nanoparticles was higher, indicating potential for better performance in optical applications.
View Article and Find Full Text PDF
Article Synopsis
  • - Atomically precise metal nanoclusters (NCs) are interesting for their unique structures and catalytic potential, but they have issues like instability and self-aggregation.
  • - This research presents a method to stabilize metal NCs by anchoring them to a metal oxide matrix, creating a hollow core-shell structure through thermal treatment.
  • - The resulting metal NPs@metal oxide heterostructures show improved catalytic activity and stability for reducing aromatic nitro compounds, suggesting a new approach to utilize the instability of metal NCs in catalysis.
View Article and Find Full Text PDF

The reported copper nanoclusters (Cu NCs) of either Cu or Cu or mixed valence (MV) Cu/Cu or Cu/Cu characters are found to be stabilized with a discrete set of ligand donors; hence, analogous Cu NCs with a common architecture supported by the same or nearly the same donor set that exhibit different MV states of Cu, such as Cu/Cu and Cu/Cu, are unknown. Such a series of highest nuclearity copper clusters supported by aromatic thiol-S donor ligands, namely [(L4)CuI15Cu(μ-S)](PF) (1), [(L4)CuI15Cu(μ-S)]ClO·8CH (2) and [(L4)CuI15Cu(DMF)](PF)·CHOH·2CH (3), where L = 2-((3-X-thiophen)-(2-yl-methylene)amino)-4-(trifluoromethyl)benzenethiol (X = H/Me), have been synthesized and their electronic structural properties have been examined and reported herein. The Cu NCs, 1 and 2, feature a central sulfido-S (S) bridged tetracopper SCu core inside a sphere-shaped CuS truncated octahedron.

View Article and Find Full Text PDF

All-inorganic lead halide perovskite nanocrystals (NCs) have excellent optoelectronic properties and promising applications. Improving the stability of inorganic halide NCs and optimizing their photoluminescence quantum yields (PLQY) has become an urgent task. Constructing core-shell structures is an effective method to improve the environmental stability and PLQY, however, realizing core-shell structured perovskite NCs with good dispersion and multiple perovskites encapsulated within the shell material remains challenging.

View Article and Find Full Text PDF

Flexible Au@Ag/PDMS SERS imprinted membrane combined with molecular imprinting technology for selective detection of MC-LR.

Spectrochim Acta A Mol Biomol Spectrosc

February 2025

Hainan Engineering Research Center of Tropical Ocean Advanced Opto-electrical Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Hainan Normal University, Haikou 571158, China; College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China. Electronic address:

In this study, a core-shell structured bimetallic nano-cube, Au@Ag NCs, was prepared by seed-mediated growth procedure. The array structure of Au@Ag NCs was achieved at the interface through the autonomous assembly technique at the three-phase boundary. Employing polydimethylsiloxane (PDMS) as a flexible carrier, the array structure was effortlessly transferred to the PDMS membrane, bypassing the need for rigid substrates through a simple "pasting" method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!