Dietary zinc (Zn) deficiency is widespread globally, and is particularly prevalent in low- and middle-income countries (LMICs). Cowpea (Vigna unguiculata (L.) Walp) is consumed widely in LMICs due to its high protein content, and has potential for use in agronomic biofortification strategies using Zn. This study aimed to evaluate the effect of Zn biofortification on grain nutritional quality of 29 cowpea genotypes. Zn application did not increase cowpea yield. In 11 genotypes sucrose concentration, in 12 genotypes total sugar concentration, and in 27 genotypes storage protein concentration increased in response to Zn supply. Fifteen genotypes had lower concentrations of amino acids under Zn application, which are likely to have been converted into storage proteins, mostly comprised of albumin. Phytic acid (PA) concentration and PA/Zn molar ratio were decreased under Zn application. Six genotypes increased shoot ureides concentration in response to Zn fertilization, indicating potential improvements to biological nitrogen fixation. This study provides valuable information on the potential for Zn application to increase cowpea grain nutritional quality by increasing Zn and soluble storage protein and decreasing PA concentration. These results might be useful for future breeding programs aiming to increase cowpea grain Zn concentrations through biofortification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2021.02.020DOI Listing

Publication Analysis

Top Keywords

grain nutritional
12
nutritional quality
12
increase cowpea
12
agronomic biofortification
8
application increase
8
concentration genotypes
8
storage protein
8
cowpea grain
8
genotypes
7
cowpea
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!