Estimation of in-situ biogas upgrading in microbial electrolysis cells via direct electron transfer: Two-stage machine learning modeling based on a NARX-BP hybrid neural network.

Bioresour Technol

Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China. Electronic address:

Published: June 2021

With the increasing of data in wastewater treatment, data-driven machine learning models are useful for modeling biological processes and complex reactions. However, few data-driven models have been developed for simulating the microbial electrolysis cells (MECs) and traditional models are too ambiguous to comprehend the mechanisms. In this study, a new general data-driven two-stage model was firstly developed to predict CH production from in-situ biogas upgrading in the biocathode MECs via direct electron transfer (DET), named NARX-BP hybrid neural networks. Compared with traditional one-stage model, the model could well predict methane production via DET with excellent performance (all R and MES of 0.918 and 6.52 × 10, respectively) and reveal the mechanisms of biogas upgrading, for the new systematical modeling approach could improve the versatility and applicability by inputting significant intermediate variables. In addition, the model is generally available to support long-term prediction and optimal operation for anaerobic digestion or complex MEC systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2021.124965DOI Listing

Publication Analysis

Top Keywords

biogas upgrading
12
in-situ biogas
8
microbial electrolysis
8
electrolysis cells
8
direct electron
8
electron transfer
8
machine learning
8
narx-bp hybrid
8
hybrid neural
8
estimation in-situ
4

Similar Publications

A review of biogas upgrading technologies: key emphasis on electrochemical systems.

Water Sci Technol

January 2025

Engineering & Energy, College of Science Health Engineering and Education, Murdoch University, 6150 Perth, Australia E-mail:

Biogas, consisting mainly of CO and CH, offers a sustainable source of energy. However, this gaseous stream has been undervalued in wastewater treatment plants owing to its high CO content. Biogas upgrading by capturing CO broadens its utilisation as a substitute for natural gas.

View Article and Find Full Text PDF

Low Molecular Weight Biobased Aromatics from Pyrolysis Liquids Using Zeolites: Yield Improvements by Using Pyrolysis Oil Fractions.

ACS Omega

January 2025

Green Chemical Reaction Engineering, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

Pyrolysis liquids from lignocellulosic biomass have the potential to be used as a feed for aromatics such as benzene, toluene, and xylenes (BTX) using catalytic upgrading with zeolites. We here report an experimental study on the conversion of various pyrolysis oil fractions to determine the most suitable one for BTX synthesis. For this purpose, the pyrolysis liquid was fractionated using several extraction/distillation steps to give four fractions with different chemical compositions.

View Article and Find Full Text PDF

Improving CO Removal Efficiency with Bio-Cellulose Acetate: A Multi-Stage Membrane Separation Approach.

Polymers (Basel)

January 2025

Biomass and Oil Palm Research Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand.

In this comprehensive investigation, the sustainable production and utilization of gas separation membranes derived from coconut water (CW) waste was investigated. The research focuses on the synthesis of bacterial cellulose (BC) and cellulose acetate (CA) membranes from CW, followed by a thorough analysis of their characteristics, including morphology, ATR-FTIR spectroscopy, tensile strength, and chemical composition. The study rigorously evaluates membrane performance, with particular emphasis on CO/CH selectivity under various operational conditions, including pressure, membrane thickness, and number of stages.

View Article and Find Full Text PDF

n-Alkyltrimethylammonium bromide (CTAB)-based deep eutectic solvent (DESs) has potential in the efficient delignification and utilization of carbohydrates in biomass. In this research, DESs containing Brønsted acid and Lewis acid were prepared with CTAB (alkyl-chain length 12-18), organic acids and metal chlorides, and the optimal treatment conditions were acquired by pretreatment optimization. Through the pretreatment with TTAB/LCA/Fe (1:4:0.

View Article and Find Full Text PDF

The upgrading of ethanol to -butanol marks a major breakthrough in the field of biofuel technology, offering the advantages of compatibility with existing infrastructure while simultaneously offering potential benefits in terms of transport efficiency and energy density. With its lower vapour pressure and reduced corrosiveness compared to ethanol, -butanol is easier not only to manage but also to transport, eliminating the need for costly infrastructure changes. This leads to improved fuel efficiency and reduced fuel consumption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!