In this study, we investigated the effects of weak static magnetic fields (SMFs) on HT-1080 human fibrosarcoma cells. Exposures to SMFs for four consecutive days were varied from 0.5 to 600 µT for treated units, while exposures to control units were held at 45 µT. Growth rates were measured by comparing cell counts, whereas membrane potentials, mitochondrial calcium, mitochondrial superoxide (O ), nitric oxide (NO), hydrogen peroxide (H O ), intercellular pH, and oxidative stress were measured by using fluorescent dyes. The relative cell growth rates vary with the angle of the SMFs. Increases in the magnitude of the SMFs increased concentrations of mitochondrial calcium and membrane potential and decreased intracellular pH. H O , an important reactive oxygen species (ROS), increases at 100 and 200 µT, decreases at 300 and 400 µT and increases again at 500 and 600 µT. Overall, oxidative stress increases slightly with increasing SMFs, while superoxide and NO concentrations decrease. These results indicate that weak SMFs can accelerate and inhibit cell growth rates and induce alterations in ROS. Changes in ROS and oxidative stress are important for various cell functions. Calcium influx into mitochondria was one of the initial steps into the corresponding changes. Bioelectromagnetics. 2021. © 2021 Bioelectromagnetics Society.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bem.22332DOI Listing

Publication Analysis

Top Keywords

growth rates
12
oxidative stress
12
weak static
8
static magnetic
8
fibrosarcoma cells
8
mitochondrial calcium
8
cell growth
8
smfs
6
effects induced
4
induced weak
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!