The present study provides surface water types and water quality indices (WQI) for 70 large coastal rivers of the Western Ghats (WG). Irrespective of seasons and lithology, concentration of cations (Ca > Na > Mg > K) and anions (HCO > Cl >SO > NO > PO) follow a typical trend all along the coast. The WG rivers can broadly be classified as calcium-bicarbonate-chloride (Ca-HCO-Cl) type. Pearson correlation analysis of major ions demonstrates natural sources influence on the riverine water composition across the WG region. Gibbs plot suggests water composition of these rivers is the result of the interaction of rock and precipitation. It means that ionic contributions from precipitation and chemical weathering of rock-forming minerals largely determine surface water quality. This biodiversity hotspot is facing high population pressure and anthropogenic activities. Despite it, quantitatively, all the physical parameters and chemical constituents are within the permissible limits of the World Health Organization (WHO) and Bureau of Indian Standards (BIS), thus making it suitable for drinking and domestic purposes. About 86% of the surface water samples are found to be suitable for irrigation (KR < 1) in non-monsoon seasons. Rivers near to Goa coast are only found unsuitable (KR > 1) for irrigation exclusively during non-monsoon seasons. From the majority of the calculated indices, it may be inferred that the river waters draining from the WG region are suitable for irrigation. Overall, the calculated WQI for studied rivers showed excellent to good water quality for drinking, agriculture, and aquatic life in monsoon seasons, which are then ranked from good to marginal in non-monsoon seasons.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-13154-8DOI Listing

Publication Analysis

Top Keywords

surface water
12
water quality
12
non-monsoon seasons
12
aquatic life
8
biodiversity hotspot
8
western ghats
8
water composition
8
suitable irrigation
8
water
7
rivers
6

Similar Publications

Surface water chemistry of the River Ganga at Varanasi was analyzed at 10 locations over 3 years (2019-2021) across pre-monsoon, monsoon, and post-monsoon seasons. The study aimed to assess water parameters using principal component analysis (PCA), calculate the water quality index (WQI), determine processes governing water chemistry, evaluate irrigation suitability, and estimate non-carcinogenic health risks. The physical parameters measured included pH (8.

View Article and Find Full Text PDF

Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).

View Article and Find Full Text PDF

In this study, water-soluble fraction (WSF), chelator-soluble fraction (CSF), and sodium carbonate-soluble fraction (NSF) were sequentially fractionated from pear pulp, of which physicochemical properties and hypolipidemic activities in vitro were evaluated. They showed distinct monosaccharide composition, surface morphology, nuclear magnetic resonance (NMR), and Fourier transform infrared (FT-IR) spectrums. WSF and NSF were identified as high methyl-esterified pectic polysaccharides with degrees of methyl esterification (DM) of 85.

View Article and Find Full Text PDF

Passive Radiant Cooling and Heating are green and sustainable methods of radiant heat management without consuming additional energy. However, the absorption of sunlight and poor insulation of materials can reduce radiative cooling and also affect radiative heating performance. Herein, we have constructed porous hierarchical dual-mode silk nanofibrous aerogel (SNF) films with high mechanical toughness and stability using silk nanofibers/GO.

View Article and Find Full Text PDF

Research of mesoporous silica loaded lignin to enhance the anti-corrosion and anti-weathering performance of epoxy surface.

Int J Biol Macromol

January 2025

Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China. Electronic address:

A new type of filler was added to epoxy resin to prepare a composite coating with excellent corrosion and weathering resistance. The simple synthesis process and nonpolluting raw materials of this filler contribute to the development of green chemistry. Specifically, lignin was encapsulated in mesoporous silica, the synergistic effect between the two resulted in the formation of lignin/mesoporous silica composite particles (MSN-L) with excellent ultraviolet (UV) resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!