Forest-to-pasture conversion is known to cause global losses in plant and animal diversity, yet impacts of livestock management after such conversion on vital microbial communities in adjoining natural ecosystems remain poorly understood. We examined how pastoral land management practices impact soil microorganisms in adjacent native forest fragments, by comparing bacterial communities sampled along 21 transects bisecting pasture-forest boundaries. Our results revealed greater bacterial taxon richness in grazed pasture soils and the reduced dispersal of pasture-associated taxa into adjacent forest soils when land uses were separated by a boundary fence. Relative abundance distributions of forest-associated taxa (i.e., Proteobacteria and Nitrospirae) and a pasture-associated taxon (i.e., Firmicutes) also suggest a greater impact of pastoral land uses on forest fragment soil bacterial communities when no fence is present. Bacterial community richness and composition were most related to changes in soil physicochemical variables commonly associated with agricultural fertilization, including concentrations of Olsen P, total P, total Cd, delta N and the ratio of C:P and N:P. Overall, our findings demonstrate clear, and potentially detrimental effects of agricultural disturbance on bacterial communities in forest soils adjacent to pastoral land. We provide evidence that simple land management decisions, such as livestock exclusion, can mitigate the effects of agriculture on adjacent soil microbial communities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1462-2920.15473 | DOI Listing |
This study aim is to elucidate the relationship between the microbial community dynamics and the production of volatile flavor compounds during the fermentation process of bacterial-type i. Using high-throughput sequencing (HTS) and headspace solid-phase microextraction, gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to investigate microbial diversity and volatile compound profiles at different fermentation stages. Spearman correlation analysis was employed to identify potential associations between microbial genera and flavor compounds.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Food Science and Technology, Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) Branch Islamic Azad University Semnan Iran.
Dental caries is a highly prevalent chronic condition globally. In recent years, scientists have turned to natural compounds such as plant extracts as an alternative to address concerns related to biofilm-mediated disease transmission, increasing bacterial resistance, and the adverse impacts of antibiotics. Consequently, this study investigated the antimicrobial properties of ethanolic, hydroethanolic, and aqueous extracts of L.
View Article and Find Full Text PDFEcol Evol
January 2025
Hebei Key Laboratory of Wetland Ecology and Conservation Hengshui China.
Captivity offers protection for endangered species, but for bustards, captive individuals face a higher risk of disease and exhibit lower reintroduction success rates. Changes in the diversity of host bacterial and fungal microbiota may be a significant factor influencing reintroduction success. The great bustard () is a globally recognized endangered bird species.
View Article and Find Full Text PDFHortic Res
January 2025
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
The circadian clock mediates metabolic functions of plants and rhythmically shapes structure and function of microbial communities in the rhizosphere. However, it is unclear how the circadian rhythm of plant hosts regulates changes in rhizosphere bacterial and fungal communities and nutrient cycles. In the present study, we measured diel changes in the rhizosphere of bacterial and fungal communities, and in nitrogen (N) and phosphorus (P) cycling in 20-year-old tea plantations.
View Article and Find Full Text PDFTurk J Pharm Sci
January 2025
Hacettepe University Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Ankara, Türkiye.
Objectives: Empirical antibiotic use is common among hospitalized patients with coronavirus disease-2019 (COVID-19) pneumonia because it is difficult to differentiate it from concurrent bacterial pneumonia. The aim of this study was to determine risk factors for concurrent bacterial community-acquired pneumonia (b-CAP) and the need for initial empirical antibiotic coverage in patients with pulmonary involvement caused by Severe acute respiratory syndrome-Coronavirus-2 (SARS-CoV-2) infection.
Materials And Methods: This prospective observational study was conducted at a tertiary university hospital between March 2020 and April 2021.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!