AI Article Synopsis

Article Abstract

CRISPR-Cas systems are prokaryotic adaptive immune systems that recognize and cleave nucleic acid targets using small RNAs called CRISPR RNAs (crRNAs) to guide Cas protein(s). There is increasing evidence for the broader endogenous roles of these systems. The CRISPR-Cas9 system of also represses endogenous transcription using a non-canonical small RNA (scaRNA). We examined whether the crRNAs of the native CRISPR-Cas systems, Cas12a and Cas9, can guide transcriptional repression. Both systems repressed mRNA transcript levels when crRNA-target complementarity was limited, and led to target cleavage with extended complementarity. Using these parameters we engineered the CRISPR array of Cas12a to guide the transcriptional repression of a new and endogenous target. Since the majority of crRNA targets remain unidentified, this work suggests that a re-analysis of crRNAs for endogenous targets with limited complementarity could reveal new, diverse regulatory roles for CRISPR-Cas systems in prokaryotic biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8583161PMC
http://dx.doi.org/10.1080/15476286.2021.1878335DOI Listing

Publication Analysis

Top Keywords

crispr-cas systems
16
transcriptional repression
12
systems prokaryotic
8
guide transcriptional
8
systems
7
endogenous
5
crrna complementarity
4
complementarity shifts
4
shifts endogenous
4
crispr-cas
4

Similar Publications

The gram-negative, facultative anaerobic bacterium Morganella morganii is linked to a number of illnesses, including nosocomial infections and urinary tract infections (UTIs). A clinical isolate from a UTI patient in Bangladesh was subjected to high-throughput whole genome sequencing and extensive bioinformatics analysis in order to gather knowledge about the genomic basis of bacterial defenses and pathogenicity in M. morganii.

View Article and Find Full Text PDF

CRISPR-Cas-mediated adaptation of Thermus thermophilus HB8 to environmental stress conditions.

Arch Microbiol

January 2025

Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, SE 106 91, Sweden.

Bacteria experience a continual array of environmental stresses, necessitating adaptive mechanisms crucial for their survival. Thermophilic bacteria, such as Thermus thermophilus, face constant environmental challenges, particularly high temperatures, which requires robust adaptive mechanisms for survival. Studying these extremophiles provides valuable insights into the intricate molecular and physiological processes used by extremophiles to adapt and survive in harsh environments.

View Article and Find Full Text PDF

Intein-mediated split Cas9 for genome editing in plants.

Front Genome Ed

January 2025

Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, Inner Mongolia, China.

Virus-induced genome editing (VIGE) technologies have been developed to address the limitations to plant genome editing, which heavily relies on genetic transformation and regeneration. However, the application of VIGE in plants is hampered by the challenge posed by the size of the commonly used gene editing nucleases, Cas9 and Cas12a. To overcome this challenge, we employed intein-mediated protein splicing to divide the transcript into two segments (Split-v1) and three segments (Split-v3).

View Article and Find Full Text PDF

A scalable CRISPR-Cas9 gene editing system facilitates CRISPR screens in the malaria parasite Plasmodium berghei.

Nucleic Acids Res

January 2025

The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden.

Many Plasmodium genes remain uncharacterized due to low genetic tractability. Previous large-scale knockout screens have only been able to target about half of the genome in the more genetically tractable rodent malaria parasite Plasmodium berghei. To overcome this limitation, we have developed a scalable CRISPR system called P.

View Article and Find Full Text PDF

Nucleic acid nanostructures offer unique opportunities for biomedical applications due to their sequence-programmable structures and functions, which enable the design of complex responses to molecular cues. Control of the biological activity of therapeutic cargoes based on endogenous molecular signatures holds the potential to overcome major hurdles in translational research: cell specificity and off-target effects. Endogenous microRNAs (miRNAs) can be used to profile cell type and cell state, and are ideal inputs for RNA nanodevices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!