Engineered nanomaterials (ENMs) have an enormous economic impact. In the surface coating industry, titanium dioxide (TiO2) and silicon dioxide (SiO2) nanoparticles are commonly incorporated into varnishes, paints, and finishing products. These ENMs are used for UV-active properties and self-cleaning activities, as well as for the durability and resistance they provide. However, several health concerns are associated with the inhalation of some ENMs. In this case study, occupational exposures to engineered nanoparticles were investigated in an industrial hardwood floor manufacturing plant during the finishing task of an automated spraying equipment. A combination of air and surface sampling was carried out during two workdays. Airborne and deposited particles were measured using a combination of real-time and filter-based sampling methods and analyzed by microscopy and spectrometry. Results indicate that the wood floor coating process generates airborne TiO2 and SiO2 nanoparticles which include individual particles in the nanoscale range (lower than 100 nm) and agglomerated particles of several hundred nanometers containing individual nanoparticles. Finishing activities significantly increased total particle number concentrations (45 620 and 117 880 particles cm-3) and surface-specific mass concentrations (154 µm2 cm-3). Concentrations of TiO2 ranged from 13 to 97 µg m-3 for personal measurements and from 36 to 55 µg m-3 for ambient measurements in the finishing location. Characterization of the deposited particles indicated the dispersion of the engineered airborne nanoparticles from the finishing location to the packaging area. Using a multimetric approach, this study shows high evidence that the worker was exposed to engineered TiO2 and SiO2 nanoparticles during the finishing process of the wood floor production facility. In addition, this study indicates that workers outside the finish spray area could be exposed to airborne engineered TiO2 and SiO2 nanoparticles coming from the finishing process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/annweh/wxab003 | DOI Listing |
F1000Res
January 2025
Department of Prosthodontics and Crown & Bridge, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
Objective: To analyze the effectiveness of various techniques available for printing, finishing and polishing of 3D printed prosthesis.
Methods: The articles were selected from electronic databases including PubMed and Scopus. Recently, lot of advancements have been observed in the field of 3D printing in dentistry.
Langmuir
January 2025
Electroplating Metal Finishing Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003 TamilNadu, India.
We report the in situ synthesis of silver-containing polyisocyanurate (Ag-PI) gels via the self-polymerization of isocyanate-containing organic molecules (Desmodur N75) catalyzed by silver nitrate (AgNO) in ,'-dimethylformamide, which acts as both the solvent and reducing agent. Fourier transform infrared spectroscopy and X-ray diffraction confirmed the formation of polyisocyanurate and metallic silver nanoparticles. Gelation occurred in 30 min at 30 °C for Ag-PI, compared to 24 h for the uncatalyzed system, demonstrating AgNO's catalytic role.
View Article and Find Full Text PDFBurns
December 2024
Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt.
This study focused on the potential of Gliricidia sepium (Jacq.) Kunth. ex.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China. Electronic address:
Polymers (Basel)
December 2024
Department of Chemistry, University of Hannam, Daejeon 34430, Republic of Korea.
The chemical mechanical polishing/planarization (CMP) is essential for achieving the desired surface quality and planarity required for subsequent layers and processing steps. However, the aggregation of slurry particles caused by abrasive materials can lead to scratches, defects, increased surface roughness, degradation the quality and durability of the finished surface after milling processes during the CMP process. In this study, ceria slurry was prepared using polymer dispersant with zinc salt of ethylene acrylic acid (EAA) copolymer at different contents of 5, 6, and 7 wt% (denoted as D5, D6, and D7) to minimize particle aggregation commonly observed in CMP slurries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!