Vasopressin V1B Receptor Antagonists as Potential Antidepressants.

Int J Neuropsychopharmacol

Research Headquarters, Taisho Pharmaceutical Co., Ltd., Kita-ku, Saitama, Saitama, Japan.

Published: July 2021

Accumulating evidence shows that certain populations of depressed patients have impaired hypothalamus-pituitary-adrenal (HPA) axis function. Arginine-vasopressin (AVP) is one of the primary factors in HPA axis regulation under stress situations, and AVP and its receptor subtype (V1B receptor) play a pivotal role in HPA axis abnormalities observed in depression. Based on this hypothesis, several non-peptide V1B receptor antagonists have been synthesized, and the efficacies of some V1B receptor antagonists have been investigated in both animals and humans. V1B receptor antagonists exert antidepressant-like effects in several animal models at doses that attenuate the hyperactivity of the HPA axis, and some of their detailed mechanisms have been delineated. These results obtained in animal models were, at least partly, reproduced in clinical trials. At least 2 V1B receptor antagonists (TS-121 and ABT-436) showed tendencies to reduce the depression scores of patients with major depressive disorder at doses that attenuate HPA axis hyperactivity or block the pituitary V1B receptor. Importantly, TS-121 showed a clearer efficacy for patients with higher basal cortisol levels than for those with lower basal cortisol levels, which was consistent with the hypothesis that V1B receptor antagonists may be more effective for patients with HPA axis hyperactivity. Therefore, V1B receptor antagonists are promising approaches for the treatment of depression involving HPA axis impairment such as depression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8278797PMC
http://dx.doi.org/10.1093/ijnp/pyab013DOI Listing

Publication Analysis

Top Keywords

v1b receptor
36
receptor antagonists
28
hpa axis
28
receptor
10
v1b
8
animal models
8
doses attenuate
8
axis hyperactivity
8
basal cortisol
8
cortisol levels
8

Similar Publications

A subgroup of patients with acute depression show an impaired regulation of the hypothalamic-pituitary-adrenocortical axis, which can be sensitively diagnosed with the combined dexamethasone (dex)/corticotropin releasing hormone (CRH)-test. This neuropathological alteration is assumed to be a result of hyperactive AVP/V1b signalling. Given the complicated procedure of the dex/CRH-test, this study aimed to develop a genetic variants-based alternative approach to predict the outcome of the dex/CRH-test in acute depression.

View Article and Find Full Text PDF

[Revisiting the vasopressin V2 receptor].

Sheng Li Xue Bao

December 2024

Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.

Arginine vasopressin (AVP) plays a crucial role in various physiological processes including water reabsorption, cardiovascular homeostasis, hormone secretion, and social behavior. AVP acts through three distinct receptor subtypes, i.e.

View Article and Find Full Text PDF

Numerous compounds involved in the regulation of the cardiovascular system are also engaged in the control of metabolism. This review gives a survey of literature showing that arginine vasopressin (AVP), which is an effective cardiovascular peptide, exerts several direct and indirect metabolic effects and may play the role of the link adjusting blood supply to metabolism of tissues. Secretion of AVP and activation of AVP receptors are regulated by changes in blood pressure and body fluid osmolality, hypoxia, hyperglycemia, oxidative stress, inflammation, and several metabolic hormones; moreover, AVP turnover is regulated by insulin.

View Article and Find Full Text PDF

Although angiotensin 1-7 (Ang 1-7) and its role as a part of the "protective" axis of the renin-angiotensin system are well described in the literature, the mechanisms of its angiotensin II-like pressor and tachycardic effects following its acute central administration are not fully understood. It was the aim of the present study to examine which receptors contribute to the aforementioned cardiovascular effects. Ang 1-7 and antagonists for glutamate, GABA, vasopressin, thromboxane A (TP), α-adrenergic, and P2X purinoceptors or modulators of oxidative stress were injected into the paraventricular nucleus of the hypothalamus (PVN) of urethane-anesthetized male Wistar rats.

View Article and Find Full Text PDF

Intestinal butyric acid-mediated disruption of gut hormone secretion and lipid metabolism in vasopressin receptor-deficient mice.

Mol Metab

January 2025

Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan. Electronic address:

Objectives: Arginine vasopressin (AVP), known as an antidiuretic hormone, is also crucial in metabolic homeostasis. Although AVP receptor-deficient mice exhibit various abnormalities in glucose and lipid metabolism, the mechanism underlying these symptoms remains unclear. This study aimed to explore the involvement of the gut hormones including glucagon-like peptide-1 (GLP-1) and microbiota as essential mediators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!