A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Gene-Environment Interaction: A Variable Selection Perspective. | LitMetric

Gene-Environment Interaction: A Variable Selection Perspective.

Methods Mol Biol

Department of Statistics, Kansas State University, Manhattan, KS, USA.

Published: April 2021

Gene-environment interactions have important implications for elucidating the genetic basis of complex diseases beyond the joint function of multiple genetic factors and their interactions (or epistasis). In the past, G × E interactions have been mainly conducted within the framework of genetic association studies. The high dimensionality of G × E interactions, due to the complicated form of environmental effects and the presence of a large number of genetic factors including gene expressions and SNPs, has motivated the recent development of penalized variable selection methods for dissecting G × E interactions, which has been ignored in the majority of published reviews on genetic interaction studies. In this article, we first survey existing studies on both gene-environment and gene-gene interactions. Then, after a brief introduction to the variable selection methods, we review penalization and relevant variable selection methods in marginal and joint paradigms, respectively, under a variety of conceptual models. Discussions on strengths and limitations, as well as computational aspects of the variable selection methods tailored for G × E studies, have also been provided.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-0947-7_13DOI Listing

Publication Analysis

Top Keywords

variable selection
20
selection methods
16
g × e interactions
12
genetic factors
8
interactions
6
variable
5
selection
5
genetic
5
gene-environment interaction
4
interaction variable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!