An Interactive Visualization for Feature Localization in Deep Neural Networks.

Front Artif Intell

Biodata Mining Group, Faculty of Technology, Bielefeld University, Bielefeld, Germany.

Published: July 2020

Deep artificial neural networks have become the go-to method for many machine learning tasks. In the field of computer vision, deep convolutional neural networks achieve state-of-the-art performance for tasks such as classification, object detection, or instance segmentation. As deep neural networks become more and more complex, their inner workings become more and more opaque, rendering them a "black box" whose decision making process is no longer comprehensible. In recent years, various methods have been presented that attempt to peek inside the black box and to visualize the inner workings of deep neural networks, with a focus on deep convolutional neural networks for computer vision. These methods can serve as a toolbox to facilitate the design and inspection of neural networks for computer vision and the interpretation of the decision making process of the network. Here, we present the new tool Interactive Feature Localization in Deep neural networks (IFeaLiD) which provides a novel visualization approach to convolutional neural network layers. The tool interprets neural network layers as multivariate feature maps and visualizes the similarity between the feature vectors of individual pixels of an input image in a heat map display. The similarity display can reveal how the input image is perceived by different layers of the network and how the perception of one particular image region compares to the perception of the remaining image. IFeaLiD runs interactively in a web browser and can process even high resolution feature maps in real time by using GPU acceleration with WebGL 2. We present examples from four computer vision datasets with feature maps from different layers of a pre-trained ResNet101. IFeaLiD is open source and available online at https://ifealid.cebitec.uni-bielefeld.de.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861262PMC
http://dx.doi.org/10.3389/frai.2020.00049DOI Listing

Publication Analysis

Top Keywords

neural networks
32
deep neural
16
computer vision
16
convolutional neural
12
feature maps
12
neural
10
feature localization
8
localization deep
8
networks
8
deep convolutional
8

Similar Publications

Current neural network models of primate vision focus on replicating overall levels of behavioral accuracy, often neglecting perceptual decisions' rich, dynamic nature. Here, we introduce a novel computational framework to model the dynamics of human behavioral choices by learning to align the temporal dynamics of a recurrent neural network (RNN) to human reaction times (RTs). We describe an approximation that allows us to constrain the number of time steps an RNN takes to solve a task with human RTs.

View Article and Find Full Text PDF

Giant cell arteritis (GCA), a systemic vasculitis affecting large and medium-sized arteries, poses significant diagnostic and management challenges, particularly in preventing irreversible complications like vision loss. Recent advancements in artificial intelligence (AI) technologies, including machine learning (ML) and deep learning (DL), offer promising solutions to enhance diagnostic accuracy and optimize treatment strategies for GCA. This systematic review, conducted according to the PRISMA 2020 guidelines, synthesizes existing literature on AI applications in GCA care, with a focus on diagnostic accuracy, treatment outcomes, and predictive modeling.

View Article and Find Full Text PDF

Draw+: network-based computational drug repositioning with attention walking and noise filtering.

Health Inf Sci Syst

December 2025

Division of Software, Yonsei University, Mirae Campus, Yeonsedae-gil 1, Wonju-si, 26493 Gangwon-do Korea.

Purpose: Drug repositioning, a strategy that repurposes already-approved drugs for novel therapeutic applications, provides a faster and more cost-effective alternative to traditional drug discovery. Network-based models have been adopted by many computational methodologies, especially those that use graph neural networks to predict drug-disease associations. However, these techniques frequently overlook the quality of the input network, which is a critical factor for achieving accurate predictions.

View Article and Find Full Text PDF

Machine learning approaches including deep learning models have shown promising performance in the automatic detection of Parkinson's disease. These approaches rely on different types of data with voice recordings being the most used due to the convenient and non-invasive nature of data acquisition. Our group has successfully developed a novel approach that uses convolutional neural network with transfer learning to analyze spectrogram images of the sustained vowel /a/ to identify people with Parkinson's disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!