Neural Network Models for Bitcoin Option Pricing.

Front Artif Intell

Department of Economics and Management, University of Pavia, Pavia, Italy.

Published: July 2019

Despite the current growing interest in Bitcoins-and cryptocurrencies in general-financial instruments, as well as studies related to them, are quite underdeveloped. Therefore, this article aims to provide a suitable pricing model for options written on this peculiar underlying. This is done through an artificial neural network approach, where classical pricing models-namely the trinomial tree, Monte Carlo simulation, and explicit finite difference method-are used as input layers. Results show that options written on Bitcoin turn out to be systematically overpriced when considering classical methods, whereas a noticeable improvement in price predictions is achieved by means of the proposed neural network model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861292PMC
http://dx.doi.org/10.3389/frai.2019.00005DOI Listing

Publication Analysis

Top Keywords

neural network
12
options written
8
network models
4
models bitcoin
4
bitcoin option
4
option pricing
4
pricing despite
4
despite current
4
current growing
4
growing interest
4

Similar Publications

Deep learning has emerged as a powerful tool in medical imaging, particularly for corneal topographic map classification. However, the scarcity of labeled data poses a significant challenge to achieving robust performance. This study investigates the impact of various data augmentation strategies on enhancing the performance of a customized convolutional neural network model for corneal topographic map classification.

View Article and Find Full Text PDF

Motivation: The drug-disease, gene-disease, and drug-gene relationships, as high-frequency edge types, describe complex biological processes within the biomedical knowledge graph. The structural patterns formed by these three edges are the graph motifs of (disease, drug, gene) triplets. Among them, the triangle is a steady and important motif structure in the network, and other various motifs different from the triangle also indicate rich semantic relationships.

View Article and Find Full Text PDF

Enhancing beer authentication, quality, and control assessment using non-invasive spectroscopy through bottle and machine learning modeling.

J Food Sci

January 2025

Digital Agriculture, Food and Wine Research Group, School of Agriculture, Food and Ecosystem Science, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia.

Fraud in alcoholic beverages through counterfeiting and adulteration is rising, significantly impacting companies economically. This study aimed to develop a method using near-infrared (NIR) spectroscopy (1596-2396 nm) through the bottle, along with machine learning (ML) modeling for beer authentication, quality traits, and control assessment. For this study, 25 commercial beers from different brands, styles, and three types of fermentation were used.

View Article and Find Full Text PDF

Bruises can affect the appearance and nutritional value of apples and cause economic losses. Therefore, the accurate detection of bruise levels and bruise time of apples is crucial. In this paper, we proposed a method that combines a self-designed multispectral imaging system with deep learning to accurately detect the level and time of bruising on apples.

View Article and Find Full Text PDF

The image retrieval is the process of retrieving the relevant images to the query image with minimal searching time in internet. The problem of the conventional Content-Based Image Retrieval (CBIR) system is that they produce retrieval results for either colour images or grey scale images alone. Moreover, the CBIR system is more complex which consumes more time period for producing the significant retrieval results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!