High generation of fecal sludge without proper treatment is a major sanitation problem. A key step in curbing this problem is producing value-added resources such as vermicompost from fecal sludge through substrate enrichment. Substrate enrichment is a vermicomposting technique that involves augmenting vermibed substrates with organic rich materials to provide additional nutrients, as well as underlying layers needed for microcosm development to produce desirable vermicompost. The aim of this study was to investigate effects of substrate enrichment with organic soils (black soil, red laterite soil and sandy soil) combined with coconut coir as bulking material, on the fecal sludge vermicomposting process and quality of the end-product. The purpose of the study was to promote the development of highly nutritive vermicompost from fecal sludge using substrate enrichment as a low-cost innovative vermicomposting technique. The enriched substrates were prepared with 160g of coconut coir, 120g of fecal matter (65-70% dry matter) and 80g of organic soil. The treatments were labelled T, T and T representing systems containing black soil, red laterite soil and sandy soil respectively. The control treatment (T) contained no soil. Triplicate treatments were setup and about 20 3-week old clitellated earthworms of the species with live weights ranging from 255 to 275mg, released into each system for vermicomposting over a period of 12 weeks. Physicochemical parameters such as pH, Organic Carbon (C), Total Nitrogen (N), Available Phosphorus (P), Exchangeable Calcium (Ca), Iron (Fe), Lead (Pb) and Aluminium (Al) were determined for both the fecal sludge and the vermicompost. The vermicompost in the setup with black soil (T) showed the highest C mineralization and N, P and Ca enhancement followed by T, T and T. Treatment T also resulted in the lowest concentration of Fe, Pb and Al in the vermicompost. Concentrations of these heavy metals were found to be higher in the other treatments in increasing order of T, T and T. Less than 16% earthworm mortality was recorded in all treatments except T, in which the mortality was about 38% (38.33 ± 13.74). The enriched substrates were therefore found to provide a more suitable microclimate for earthworm development and produced vermicompost with high nutrient content. However, a more comprehensive study on metal accumulation in the earthworm tissues as a potential metal contaminant is needed to establish a strong hypothesis in the safe use of earthworms for this vermicomposting technique.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7941161 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2021.e06422 | DOI Listing |
J Water Health
January 2025
Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan.
The discharge of sewage effluent is a major source of microbial contamination in drinking water sources, necessitating a comprehensive investigation of its impact on pathogenic bacterial communities. This study utilized full-length 16S rRNA gene amplicon sequencing to identify putative pathogenic bacteria and analyze their community structures in drinking water sources subjected to different levels of fecal pollution: urban rivers with low, moderate, and high sewage effluent mixing ratios, and mountain streams with minimal human impact. The sewage effluent itself was also analyzed.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Laboratory of Molecular Microbiology and Food Safety, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China; Hainan Institute of Zhejiang University, Sanya, 572025, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China. Electronic address:
Salmonella presents a significant threat to the health of animals and humans, especially with the rise of strains resistant to multiple drugs. This highlights the necessity for creating sustainable and efficient practical approaches to managing salmonellosis. The most recent and safest approach to combat antimicrobial resistance-associated infections is lytic bacteriophages.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, 1101, Quezon City, Philippines.
Microbial eukaryotes are vital to global microbial diversity, but there is limited information about their composition and sources in contaminated surface waters. This study examined the pathogens and potential sources of microbial eukaryotic communities in polluted sink environments using the 18S rDNA amplicon sequencing combined with the fast expectation-maximization for microbial source tracking (FEAST) program. Six sampling sites were selected along the Pasig-Marikina-San Juan (PAMARISAN) River System, representing different locations within the waterway and classified as sinks (n = 12), whereas animal fecal samples collected from various farms were classified as sources (n = 29).
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil. Electronic address:
The critically endangered Brazilian guitarfish faces significant threats from environmental contamination. Assessing the impacts of such stressor is paramount from a conservational perspective. This study investigated the concentrations, distribution and accumulation patterns of organic contaminants in pregnant Brazilian guitarfish Pseudobatos horkelii.
View Article and Find Full Text PDFVet Sci
January 2025
College of Animal Science and Technology, Shihezi University, Shihezi 832003, China.
(1) Background: In recent years, the increasing emergence of multidrug-resistant pathogens in pig farms has begun to pose a severe threat to animal welfare and, by extension, public health. In this study, we aimed to explore the biological characteristics and genomic features of bacteriophages that are capable of lysing porcine multidrug-resistant , which was isolated from sewage. In doing so, we provided a reference for phage therapies that can be used to treat multidrug-resistant strains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!