Unlabelled: Among the biotic factors, which affect the productivity and quality of sugarcane, red rot disease caused by the fungal pathogen, is the most devastating that cause enormous loss to millers as well as cane growers. We present a highly contiguous genome assembly of pathotype 08 which is virulent to popular sugarcane varieties grown in more than 3 million hectares in sub-tropical India. By performing long read sequencing on PacBio RSII system, 56.06 Mb assemblies with 238 contigs having N50 of 0.51 Mb and L50 of 34 was produced. A BUSCO completeness score of 97.24% (including 4.1% fragmented) of the entire 08 nuclear genome, greatly improved contiguity compared to an existing highly fragmented draft of 671 genome (48.13 Mb) was obtained. This 08 assembly had 54.14% GC content and possessed < 1% repetitive elements. A total of 18,635 protein-coding genes were predicted compared with 12,270 for 671. Among 617 CAZymes predicted, glycoside hydrolases were the predominant (298), and among 7264 genes associated with pathogenicity/virulence, 77 genes having effector functions were identified. The assembled genome showed its similarity with the genome of and the causal organisms of anthracnose in maize and in members of Brassicaceae, respectively. A total of 94 large sequences (> 100 kb) of 08 were mapped over 10 of 12 chromosomes with 106 synteny blocks. Results discussed here would provide an important tool for future studies of evolutionary and functional genomics in .

Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-021-02695-x.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914311PMC
http://dx.doi.org/10.1007/s13205-021-02695-xDOI Listing

Publication Analysis

Top Keywords

highly contiguous
8
genome assembly
8
assembly pathotype
8
red rot
8
rot disease
8
contiguous reference
4
genome
4
reference genome
4
pathotype causing
4
causing red
4

Similar Publications

Impeding linear calibration models from accurately predicting target sample analyte amounts are the target sample-wise deviations in measurement profiles (e.g., spectra) relative to calibration samples.

View Article and Find Full Text PDF

Cu-Catalyzed Diastereo- and Enantioselective Synthesis of Borylated Cyclopropanes with Three Contiguous Stereocenters.

J Am Chem Soc

January 2025

Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Direct synthesis of enantioenriched scaffolds with multiple adjacent stereocenters remains an important yet challenging task. Herein, we describe a highly diastereo- and enantioselective Cu-catalyzed alkylboration of cyclopropenes, with less reactive alkyl iodides as electrophiles, for the efficient synthesis of -substituted borylated cyclopropanes bearing three consecutive stereocenters. This protocol features mild conditions, a broad substrate scope, and good functional group tolerance, affording an array of chiral borylated cyclopropanes in good to high yields with excellent diastereo- and enantioselectivities.

View Article and Find Full Text PDF

Perspectives and opportunities in forensic human, animal, and plant integrative genomics in the Pangenome era.

Forensic Sci Int

January 2025

Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China; Center for Archaeological Science, Sichuan University, Chengdu 610000, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China. Electronic address:

The Human Pangenome Reference Consortium, the Chinese Pangenome Consortium, and other plant and animal pangenome projects have announced the completion of pilot work aimed at constructing high-quality, haplotype-resolved reference graph genomes representative of global ethno-linguistically different populations or different plant and animal species. These graph-based, gapless pangenome references, which are enriched in terms of genomic diversity, completeness, and contiguity, have the potential for enhancing long-read sequencing (LRS)-based genomic research, as well as improving mappability and variant genotyping on traditional short-read sequencing platforms. We comprehensively discuss the advancements in pangenome-based genomic integrative genomic discoveries across forensic-related species (humans, animals, and plants) and summarize their applications in variant identification and forensic genomics, epigenetics, transcriptomics, and microbiome research.

View Article and Find Full Text PDF

Climate change poses direct and indirect threats to public health, including exacerbating air pollution. However, the influence of rising temperature on air quality remains highly uncertain in the United States, particularly under rapid reduction in anthropogenic emissions. Here, we examined the sensitivity of surface-level fine particulate matter (PM) and ozone (O) to summer temperature anomalies in the contiguous US as well as their decadal changes using high-resolution datasets generated by machine learning.

View Article and Find Full Text PDF

Complete datasets of genetic variants are key to biodiversity genomic studies. Long-read sequencing technologies allow the routine assembly of highly contiguous, haplotype-resolved reference genomes. However, even when complete, reference genomes from a single individual may bias downstream analyses and fail to adequately represent genetic diversity within a population or species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!