Zinc alloy development and characterization for vascular stent application has been facilitated by many standardized and inexpensive methods. In contrast, overly simplistic in vitro approaches dominate the preliminary biological testing of materials. In 2012, our group introduced a metal wire implantation model in rats as a cost effective and realistic approach for the biocompatibility evaluation of degradable materials in the vascular environment. Here, we have adapted metrics routinely used for evaluating stents to quantitatively characterize the long-term progression of the neointima that forms around zinc based wire implants. Histological cross-sections were used to measure the length of neointimal protrusion from the wire into the lumen (denoted wire to lumen thickness), the base neointimal length (describing the breadth of neointimal activation), and the neointimal area. These metrics were used to provide in depth characterization details for neointimal responses to Zn-Mg and Zn-Li alloys and may be used to compare different materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962665PMC
http://dx.doi.org/10.1007/s11837-019-03371-5DOI Listing

Publication Analysis

Top Keywords

zinc based
8
wire lumen
8
neointimal
5
preclinical in-vivo
4
in-vivo evaluation
4
evaluation screening
4
screening zinc
4
based degradable
4
degradable metals
4
metals endovascular
4

Similar Publications

Mitogen-activated protein kinase 1 (MAPK1) is a serine/threonine kinase that plays a crucial role in the MAP kinase signaling transduction pathway. This pathway plays a crucial role in various cellular processes, including cell proliferation, differentiation, adhesion, migration, and survival. Besides, many chemotherapeutic drugs targeting the MAPK pathway are used in clinical practice, and novel inhibitors of MAPK1 with improved specificity and efficacy are required.

View Article and Find Full Text PDF

Aqueous zinc-based batteries (AZBs) are gaining widespread attention owing to their intrinsic safety, relatively low electrode potential, and high theoretical capacity. Transition metal dichalcogenides (TMDs) have convenient 2D ion diffusion channels, so they have been identified as promising host materials for AZBs, but face several key challenges such as the narrow interlayer spacing and the lack of in-deep understanding energy storage mechanisms. This review presents a comprehensive summary and discussion of the intrinsic structure, charge storage mechanisms, and key fabrication strategies of TMD-based cathodes for AZBs.

View Article and Find Full Text PDF

This current study focusses on the investigation of the self-healing abilities of metallopolymers containing different kinds of metal complexes, which were processed by direct digital light processing (DLP) based three-dimensional (3D) printing. For this purpose, 2‑phenoxyethyl acrylate is mixed with ligand-containing monomers either based on triphenylmethyl(trt)-histidine or terpyridine, respectively. Either zinc(II) or nickel(II) salts are successfully applied for a complexation of the ligand monomers in solution and, subsequently, photopolymerization is performed.

View Article and Find Full Text PDF

The integration of dual-mesoporous structures, the construction of heterojunctions, and the incorporation of highly concentrated oxygen vacancies are pivotal for advancing metal oxide-based gas sensors. Nonetheless, achieving an optimal design that simultaneously combines mesoporous structures, precise heterojunction modulation, and controlled oxygen vacancies through a one-step process remains challenging. This study proposes an innovative method for fabricating zinc stannate semiconductors featuring dual-mesoporous structures and tunable oxygen vacancies via a direct solution precursor plasma spray technique.

View Article and Find Full Text PDF

Zinc sulphide is a widely used inorganic powder, and its production has reached quantities greater than 1000 t/year. Therefore, in accordance with OECD guideline 436, an acute inhalation test was implemented to provide more accurate data. This study is crucial for ensuring the safety of workers exposed to zinc sulphide dust and complying with regulatory requirements for REACH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!