AI Article Synopsis

  • The research provides effective methods for culturing post-implantation mouse embryos outside the uterus, from just before gastrulation (E5.5) to hindlimb formation (E11).
  • This culture system utilizes both static and rotating environments to mimic natural development processes and has been validated through multiple analyses, showing that these embryos develop similarly to those inside the uterus.
  • The ability to manipulate and study these embryos in a controlled environment opens new avenues for understanding embryogenesis and the processes involved in mammalian development.

Article Abstract

The mammalian body plan is established shortly after the embryo implants into the maternal uterus, and our understanding of post-implantation developmental processes remains limited. Although pre- and peri-implantation mouse embryos are routinely cultured in vitro, approaches for the robust culture of post-implantation embryos from egg cylinder stages until advanced organogenesis remain to be established. Here we present highly effective platforms for the ex utero culture of post-implantation mouse embryos, which enable the appropriate development of embryos from before gastrulation (embryonic day (E) 5.5) until the hindlimb formation stage (E11). Late gastrulating embryos (E7.5) are grown in three-dimensional rotating bottles, whereas extended culture from pre-gastrulation stages (E5.5 or E6.5) requires a combination of static and rotating bottle culture platforms. Histological, molecular and single-cell RNA sequencing analyses confirm that the ex utero cultured embryos recapitulate in utero development precisely. This culture system is amenable to the introduction of a variety of embryonic perturbations and micro-manipulations, the results of which can be followed ex utero for up to six days. The establishment of a system for robustly growing normal mouse embryos ex utero from pre-gastrulation to advanced organogenesis represents a valuable tool for investigating embryogenesis, as it eliminates the uterine barrier and allows researchers to mechanistically interrogate post-implantation morphogenesis and artificial embryogenesis in mammals.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03416-3DOI Listing

Publication Analysis

Top Keywords

mouse embryos
12
culture post-implantation
8
advanced organogenesis
8
embryos
7
utero
6
culture
5
utero mouse
4
mouse embryogenesis
4
embryogenesis pre-gastrulation
4
pre-gastrulation late
4

Similar Publications

Protective Effects of Phycobiliproteins from (Spirulina) Against Cyclophosphamide-Induced Embryotoxicity and Genotoxicity in Pregnant CD1 Mice.

Pharmaceuticals (Basel)

January 2025

Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Mexico City C.P. 07738, Mexico.

: In recent years the global incidence of cancer during pregnancy is rising, occurring in 1 out of every 1000 pregnancies. In this regard, the most used chemotherapy drugs to treat cancer are alkylating agents such as cyclophosphamide (Cp). Despite its great efficacy, has been associated with the production of oxidative stress and DNA damage, leading to embryotoxicity, genotoxicity, and teratogenicity in the developing .

View Article and Find Full Text PDF

Cumulus cells and the TNF-alpha signaling facilitate aging of ovine oocytes.

Theriogenology

January 2025

College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China. Electronic address:

Post-maturation oocyte aging (PMOA) is known to significantly impair the developmental potential of oocytes; however, comprehensive studies on ovine PMOA remain limited. In mice, cumulus cells (CCs) accelerate oocyte aging by releasing cytokines, but the roles of CCs and cytokines in PMOA of domestic animals are poorly understood. This study aimed to elucidate the involvement of CCs and tumor necrosis factor (TNF)-α in the PMOA of ovine oocytes.

View Article and Find Full Text PDF

Comparative proteomic landscapes elucidate human preimplantation development and failure.

Cell

January 2025

Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China. Electronic address:

Understanding mammalian preimplantation development, particularly in humans, at the proteomic level remains limited. Here, we applied our comprehensive solution of ultrasensitive proteomic technology to measure the proteomic profiles of oocytes and early embryos and identified nearly 8,000 proteins in humans and over 6,300 proteins in mice. We observed distinct proteomic dynamics before and around zygotic genome activation (ZGA) between the two species.

View Article and Find Full Text PDF

Pregnancy failure in the first trimester of cows significantly impacts the efficiency of the dairy industry. As a type I interferon exclusively to ruminants, IFN-τ plays a key role in maternal recognition and immune tolerance of fetuses. Macrophages are the most common immune cells within the ruminant endometrium.

View Article and Find Full Text PDF

We aimed to explore the therapeutic efficacy of miR-7704-modified extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (HUCMSCs) for osteoarthritis (OA) treatment. In vitro experiments demonstrated the successful transfection of miR-7704 into HUCMSCs and the isolation of EVs from these cells. In vivo experiments used an OA mouse model to assess the effects of the injection of miR-7704-modified EVs intra-articularly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!