The ocean contains unique biodiversity, provides valuable food resources and is a major sink for anthropogenic carbon. Marine protected areas (MPAs) are an effective tool for restoring ocean biodiversity and ecosystem services, but at present only 2.7% of the ocean is highly protected. This low level of ocean protection is due largely to conflicts with fisheries and other extractive uses. To address this issue, here we developed a conservation planning framework to prioritize highly protected MPAs in places that would result in multiple benefits today and in the future. We find that a substantial increase in ocean protection could have triple benefits, by protecting biodiversity, boosting the yield of fisheries and securing marine carbon stocks that are at risk from human activities. Our results show that most coastal nations contain priority areas that can contribute substantially to achieving these three objectives of biodiversity protection, food provision and carbon storage. A globally coordinated effort could be nearly twice as efficient as uncoordinated, national-level conservation planning. Our flexible prioritization framework could help to inform both national marine spatial plans and global targets for marine conservation, food security and climate action.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-021-03371-z | DOI Listing |
Nucleic Acids Res
January 2025
MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
DNA N6-methyladenine (6mA) is a potential epigenetic mark involved in gene transcription in eukaryotes, yet the regulatory mechanism governing its methyltransferase (MTase) activity remains obscure. Here, we exploited the 6mA MTase AMT1 to elucidate its auto-regulation in the unicellular eukaryote Tetrahymena thermophila. The detailed endogenous localization of AMT1 in vegetative and sexual stages revealed a correlation between the 6mA reestablishment in the new MAC and the occurrence of zygotically expressed AMT1.
View Article and Find Full Text PDFData Brief
February 2025
Marine Research Institute, Klaipėda University, H. Manto 84, 92294 Klaipėda, Lithuania.
Over the last few decades, climate change in Svalbard (European Arctic) has led to the emergence and growth of periglacial coastal lagoons in the place of retreating glaciers. In these emerging water bodies, new ecosystems are formed, consisting of elements presumably entering the lagoon from the melting glacier, the surrounding tundra water bodies and the coastal ocean. The data presented here were collected from an emerging lagoon in the western region of Spitsbergen, Svalbard, situated between the retreating Eidembreen Glacier and Eidembukta Bay in 2022-2023.
View Article and Find Full Text PDFZookeys
January 2025
Steinhart Aquarium, California Academy of Sciences, San Francisco, CA 94118, USA.
Herein, we describe a new species of perchlet found at depths of 100-125 meters in mesophotic coral ecosystems of the Maldives in the Indian Ocean. is unique in both morphology and coloration. The following combination of characters distinguishes it from all known congeners: dorsal fin X, 15; anal-fin rays III, 7; pectoral-fin rays 13 | 13 (13 | 12), all unbranched; principal caudal-fin rays 9 + 8; lateral line complete with 30-32 tubed scales; gill rakers 5 + 12; circumpeduncular scales 11-12; and absence of antrorse or retrorse spines on ventral margin of preopercle.
View Article and Find Full Text PDFPeerJ
January 2025
Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China.
Vetulicolians are an enigmatic phylum of extinct Cambrian marine invertebrates. They are particularly diverse in the Chengjiang Biota of China, but representatives have been recovered from other Fossil-Lagerstätten (Cambrian Stage 3-Drumian). These organisms are characterized by a bipartite body, which is split into an anterior section and a posterior segmented section connected by a narrow constriction.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Key Laboratory of Exploration and Utilization of Aquatic genetic Resources, Ministry of Education, International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China. Electronic address:
Frog virus 3-like ranaviruses (FV3-like viruses), particularly FV3 (Frog virus 3), represent typical species within the genus Ranavirus, primarily infecting amphibians and reptiles, thereby posing serious threats to aquaculture and biodiversity conservation. We designed a pair of universal primers and a probe targeting the conserved region of the major capsid protein (MCP) genes of FV3-like viruses. By integrating recombinase-aided amplification (RAA) with lateral flow dipstick (LFD) technology and real-time fluorescence (RF) modification, we established RAA-LFD and RF-RAA assays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!