We report the structural engineering of ZnO nanostructures by a consistent solution method using distinct solvents such as ethylene glycol, 1-butanol, acetic acid and water. The growth kinetics are found to depend strongly on the physicochemical properties of the solvent and zeta potential of the colloidal solution. Furthermore, the resulting nanostructures as a photoanode material, displayed a prominent structure dependent property in determining the efficiency of dye-sensitized solar cells (DSSCs). The fabricated solar cell with ZnO nanostructures based photoanode exhibited improved conversion efficiency. Moreover, the nanoflower based DSSCs showed a higher conversion efficiency of 4.1% compared to the other structures. The excellent performance of ZnO nanoflower is attributed to its better light-harvesting ability and increased resistance to charge-recombination. Therefore ZnO nanostructures can be a promising alternative for TiO in DSSCs. These findings provide new insight into the simple, low cost and consistent synthetic strategies for ZnO nanostructures and its outstanding performance as a photoanode material in DSSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969771 | PMC |
http://dx.doi.org/10.1038/s41598-021-85701-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!