This study aimed to ascertain gene expression profile differences between progressive muscle-invasive bladder cancer (MIBC) and de novo MIBC, and to identify prognostic biomarkers to improve patients' treatment. Retrospective multicenter study in which 212 MIBC patients who underwent radical cystectomy between 2000 and 2019 were included. Gene expression profiles were determined in 26 samples using Illumina microarrays. The expression levels of 94 genes were studied by quantitative PCR in an independent set of 186 MIBC patients. In a median follow-up of 16 months, 46.7% patients developed tumor progression after cystectomy. In our series, progressive MIBC patients show a worse tumor progression (p = 0.024) and cancer-specific survival (CSS) (p = 0.049) than the de novo group. A total of 480 genes were found to be differently expressed between both groups. Differential expression of 24 out of the 94 selected genes was found in an independent cohort. RBPMC2 and DSC3 were found as independent prognostic biomarkers of tumor progression and CALD1 and LCOR were identified as prognostic biomarkers of CSS between both groups. In conclusion, progressive and de novo MIBC patients show different clinical outcome and gene expression profiles. Gene expression patterns may contribute to predict high-risk of progression to distant metastasis or CSS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969618PMC
http://dx.doi.org/10.1038/s41598-021-85137-1DOI Listing

Publication Analysis

Top Keywords

gene expression
20
mibc patients
16
prognostic biomarkers
12
tumor progression
12
expression profile
8
progressive novo
8
bladder cancer
8
novo mibc
8
expression profiles
8
expression
7

Similar Publications

In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.

View Article and Find Full Text PDF

Metabolic enhancement contributed by horizontal gene transfer is essential for dietary specialization in leaf beetles.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.

Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.

View Article and Find Full Text PDF

Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).

View Article and Find Full Text PDF

Dissecting the cellular architecture and genetic circuitry of the soybean seed.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.

Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.

View Article and Find Full Text PDF

Deletion of metal transporter Zip14 reduces major histocompatibility complex II expression in murine small intestinal epithelial cells.

Proc Natl Acad Sci U S A

January 2025

Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.

Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!