Background: Hypertension is considered a major risk factor for the progression of diabetic kidney disease. Type 2 diabetes is associated with increased renal sodium reabsorption and salt-sensitive hypertension. Clinical studies show that men have higher risk than premenopausal women for the development of diabetic kidney disease. However, the renal mechanisms that predispose to salt sensitivity during diabetes and whether sexual dimorphism is associated with these mechanisms remains unknown.
Methods: Female and male db/db mice exposed to a high-salt diet were used to analyze the progression of diabetic kidney disease and the development of hypertension.
Results: Male, 34-week-old, db/db mice display hypertension when exposed to a 4-week high-salt treatment, whereas equivalently treated female db/db mice remain normotensive. Salt-sensitive hypertension in male mice was associated with no suppression of the epithelial sodium channel (ENaC) in response to a high-salt diet, despite downregulation of several components of the intrarenal renin-angiotensin system. Male db/db mice show higher levels of proinflammatory cytokines and more immune-cell infiltration in the kidney than do female db/db mice. Blocking inflammation, with either mycophenolate mofetil or by reducing IL-6 levels with a neutralizing anti-IL-6 antibody, prevented the development of salt sensitivity in male db/db mice.
Conclusions: The inflammatory response observed in male, but not in female, db/db mice induces salt-sensitive hypertension by impairing ENaC downregulation in response to high salt. These data provide a mechanistic explanation for the sexual dimorphism associated with the development of diabetic kidney disease and salt sensitivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8259671 | PMC |
http://dx.doi.org/10.1681/ASN.2020081112 | DOI Listing |
J Cell Mol Med
January 2025
NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China.
Proper differentiation of bone marrow stromal cells (BMSCs) into adipocytes is crucial for maintaining skeletal homeostasis. However, the underlying regulatory mechanisms remain incompletely understood, posing a challenge for the treatment of age-related osteopenia and osteoporosis. Here, through comprehensive gene expression analysis during BMSC differentiation into adipocytes, we identified the forkhead transcription factor Foxk2 as a key regulator of this process.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
The fasting hypoglycemic effect of casein hydrolysate (CH) was investigated in db/db diabetic-like mice using a multiomics integrated analysis of peptidome, transcriptome, and metabolome. Results showed that the oral administration of CH at a dose of 600 mg/kg/day for 4 weeks reduced the fasting blood glucose levels by 14.73 ± 9.
View Article and Find Full Text PDFMol Metab
January 2025
Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA. Electronic address:
Objective: Loss of functional β-cell mass is a major cause of diabetes. Thus, identifying regulators of β-cell health is crucial for treating this disease. The In this study, we assessed the regulation of Lgr4 in islets, and the role of LGR4 and LGR4/RANK stoichiometry in β-cell health under basal and stress-induced conditions, in vitro and in vivo.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China. Electronic address:
Centella asiatica (L.) Urban, one of the authentic medicinal materials from Guizhou Province in China, has been traditionally applied for the treatment of contusions and fractures, as well as for promoting wound healing. Preliminary research suggests that asiaticoside-nitric oxide hydrogel (ACNO) exhibits the potential to enhance the healing of diabetic wounds (DWs); however, the underlying molecular mechanisms require further elucidation.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China.
Purpose: This study investigated the impact of hyperglycemia in type 2 diabetes mellitus (T2DM) on the circadian rhythms and function of lacrimal glands (LGs) in contributing to dry eye syndrome. We assessed the effects of hyperglycemia on circadian gene expression, immune cell recruitment, neural activity, and metabolic pathways, and evaluated the effectiveness of insulin in restoring normal LG function.
Methods: Using a T2DM mouse model (db/db mice), circadian transcriptomic changes in LGs were analyzed through RNA sequencing over a 24-hour period.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!