A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microbial composition of a hydropower cooling water system reveals thermophilic bacteria with a possible role in primary biofilm formation. | LitMetric

Microfouling, ie biofilm formation on surfaces, can have an economic impact and requires costly maintenance in water-powered energy generation systems. In this study, the microbiota of a cooling system (filter and heat exchanger) in the Irapé hydroelectric power plant in Brazil was examined. The goal was to identify bacteria that could be targeted to more efficiently reduce biofilm formation. Two sampling campaigns were made corresponding to two well-defined seasons of the Brazilian Cerrado biome: the dry (campaign 1) and the wet (campaign 2). Microfouling communities varied considerably over time in samples obtained at different times after the last clearance of the heat exchanger. The thermophilic bacteria , and were exclusive and abundant in the microfouling of the heat exchanger in campaign 2, while methanotrophs and iron-reducing bacteria were abundant only in filter sediments. These findings could help to guide strategies for ecofriendly measures to reduce biofilm fouling in hydroelectric power plants, minimizing environmental and economic losses.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08927014.2021.1897790DOI Listing

Publication Analysis

Top Keywords

biofilm formation
12
heat exchanger
12
thermophilic bacteria
8
hydroelectric power
8
reduce biofilm
8
microbial composition
4
composition hydropower
4
hydropower cooling
4
cooling water
4
water system
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!