Objective: We assessed differences in mitochondrial function between youth living with perinatal HIV (YPHIV) and youth perinatally HIV-exposed but uninfected (YPHEU).
Design: Cross-sectional analysis.
Methods: We measured lactate and pyruvate values, as well as mitochondrial Complex I and Complex IV activity in peripheral blood mononuclear cells. Logistic or linear regression models were fit, as appropriate, to assess the association between PHIV status and each mitochondrial parameter, adjusted for confounders. We introduced interaction terms to assess effect modification of PHIV status on the relationship between anthropometric factors and each mitochondrial parameter. Among YPHIV, similar regression models were fit to assess the relationship between HIV-associated factors and each mitochondrial outcome.
Results: A total of 243 YPHIV and 118 YPHEU were compared. On average, YPHIV had higher lactate/pyruvate ratio (β: 7.511, 95% confidence interval [95% CI]: 0.402, 14.620) and Complex IV activity (β: 0.037, 95% CI: 0.002, 0.072) compared to YPHEU, adjusted for confounders. Among YPHIV, body mass index Z score (BMIZ) and Complex I activity were inversely associated, whereas, among YPHEU, there was a positive association (β for interaction: -0.048, P = 0.003). Among YPHIV, current (β: -0.789, 95% CI: -1.174, -0.404) and nadir CD4+% (β: -0.605, 95% CI: -1.086, -0.125) were inversely associated with lactate/pyruvate ratio; higher current (4.491, 95% CI: 0.754, 8.229) and peak (7.978, 95% CI: 1.499, 14.457) HIV RNA levels were positively associated with lactate/pyruvate ratio in adjusted models.
Conclusions: Mitochondrial function and substrate utilization appear perturbed in YPHIV compared to YPHEU. Increasing immunosuppression and viremia are associated with mitochondrial dysfunction among YPHIV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8243810 | PMC |
http://dx.doi.org/10.1097/QAD.0000000000002884 | DOI Listing |
Viruses
December 2024
Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA.
During virus infection, the activation of the antiviral endoribonuclease, ribonuclease L (RNase L), by a unique ligand 2'-5'-oilgoadenylate (2-5A) causes the cleavage of single-stranded viral and cellular RNA targets, restricting protein synthesis, activating stress response pathways, and promoting cell death to establish broad antiviral effects. The immunostimulatory dsRNA cleavage products of RNase L activity (RL RNAs) recruit diverse dsRNA sensors to activate signaling pathways to amplify interferon (IFN) production and activate inflammasome, but the sensors that promote cell death are not known. In this study, we found that DEAH-box polypeptide 15 (DHX15) and retinoic acid-inducible gene I (Rig-I) are essential for apoptosis induced by RL RNAs and require mitochondrial antiviral signaling (MAVS), c-Jun amino terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) for caspase-3-mediated intrinsic apoptosis.
View Article and Find Full Text PDFViruses
November 2024
Department of Microbiology & Immunology, Stanford Medical School, Stanford University, Stanford, CA 94305, USA.
Cytomegaloviruses, species-specific members of the betaherpesviruses, encode an impressive array of immune evasion strategies committed to the manipulation of the host immune system enabling these viruses to remain for life in a stand-off with host innate and adaptive immune mechanisms. Even though they are species-restricted, cytomegaloviruses are distributed across a wide range of different mammalian species in which they cause systemic infection involving many different cell types. Regulated, or programmed cell death has a recognized potential to eliminate infected cells prior to completion of viral replication and release of progeny.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China.
Background/objectives: Colorectal cancer (CRC) is characterized by a high rate of both incidence and mortality, and its treatment outcomes are often affected by recurrence and drug resistance. Ferroptosis, an iron-dependent programmed cell death mechanism triggered by lipid peroxidation, has recently gained attention as a potential therapeutic target. Graphene oxide (GO), known for its oxygen-containing functional groups, biocompatibility, and potential for functionalization, holds promise in cancer treatment.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, Ministry of Agriculture and Rural Affairs, School of Life Sciences, Nantong University, Nantong 226019, China.
β-ketoacyl-CoA synthase (KCS) enzymes play a pivotal role in plants by catalyzing the first step of very long-chain fatty acid (VLCFA) biosynthesis. This process is crucial for plant development and stress responses. However, the understanding of genes in maize remains limited.
View Article and Find Full Text PDFToxics
November 2024
The Julius L. Chambers Biomedical/Biotechnology Research Institute (JLC-BBRI), North Carolina Central University (NCCU), Durham, NC 27707, USA.
Crude oil naphtha fraction C9 alkylbenzenes consist of trimethylbenzenes, ethyltoluenes, cumene, and n-propylbenzene. The major fraction of C9 alkylbenzenes is ethyltoluenes (ETs) consisting of three isomers: 2-ethyltoluene (2-ET), 3-ethyltoluene (3-ET), and 4-ethyltoluene (4-ET). Occupational and environmental exposure to ETs can occur via inhalation and ingestion and cause several health problems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!