AI Article Synopsis

  • Research is focusing on developing new platinum-based compounds to overcome issues with resistance and side effects seen in existing chemotherapy drugs like cisplatin.
  • A series of 14 Pt(II) and Pt(IV) compounds were synthesized with different ligands, revealing that the type of bidentate ligand significantly impacts anti-proliferative properties, particularly showing promising results for a Pt(II) compound with an aniline fragment.
  • Studies confirmed that DNA is the primary target for the most effective compound, which induces cell death through apoptosis, and highlighted that while reduction potential was not a reliable predictor for activity, a correlation was found between cytotoxicity and standard reduction potential.

Article Abstract

The problems of resistance and side effects associated with cisplatin and other chemotherapeutic drugs have boosted research aimed at finding new compounds with improved properties. The use of platinum(IV) prodrugs is one alternative, although there is some controversy regarding the predictive ability of the peak reduction potentials. In the work described here a series of fourteen chloride Pt(II) and Pt(IV) compounds was synthesised and fully characterised. The compounds contain different bidentate arylazole heterocyclic ligands. Their cytotoxic properties against human lung carcinoma (A549), human breast carcinoma (MCF7) and human colon carcinoma (HCT116 and HT29) cell lines were studied. A clear relationship between the type of ligand and the anti-proliferative properties was found, with the best results obtained for the Pt(II) compound that contains an aniline fragment, (13), thus evidencing a positive effect of the NH group. Stability and aquation studies in DMSO, DMF and DMSO/water mixtures were carried out on the active complexes and an in-depth analysis of the two aquation processes, including DFT analysis, of 13 was undertaken. It was verified that DNA was the target and that cell death occurred by apoptosis in the case of 13. Furthermore, the cytotoxic derivatives did not exhibit haemolytic activity. The reduction of the Pt(IV) compounds whose Pt(II) congeners were active was studied by several techniques. It was concluded that the peak reduction potential was not useful to predict the ability for reduction. However, a correlation between the cytotoxic activity and the standard reduction potential was found.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2021.111403DOI Listing

Publication Analysis

Top Keywords

reduction potential
16
ptiv compounds
12
peak reduction
12
aniline fragment
8
ptii ptiv
8
standard reduction
8
reduction
7
compounds
5
ptii
4
fragment ptii
4

Similar Publications

Background: The escalating global scarcity of skilled health care professionals is a critical concern, further exacerbated by rising stress levels and clinician burnout rates. Artificial intelligence (AI) has surfaced as a potential resource to alleviate these challenges. Nevertheless, it is not taken for granted that AI will inevitably augment human performance, as ill-designed systems may inadvertently impose new burdens on health care workers, and implementation may be challenging.

View Article and Find Full Text PDF

Clinical and Structural Parameters in Autosomal Dominant Optic Atrophy Patients: A Cross-Sectional Study Using Optical Coherence Tomography.

J Neuroophthalmol

November 2024

Ophthalmology Department (AC-C, MF-R, SA-A, RA, BS-D), Seu Maternitat, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain; Faculty of Medicine and Health Sciences (AC-C, SA-A, BS-D), Universitat de Barcelona, Barcelona, Spain; Fundació Per La Recerca Biomèdica-IDIBAPS (MF-R, SA-A, BS-D), Barcelona, Spain; and Ophthalmology Department (MS-G), Consorci Mar Parc de Salut de Barcelona, Barcelona, Spain.

Background: Autosomal Dominant Optic Atrophy (ADOA) is a hereditary optic neuropathy characterized by retinal ganglion cell degeneration and optic nerve fiber loss. This study examined the correlation between clinical and structural parameters in patients with ADOA using optical coherence tomography (OCT) and explored potential clinical biomarkers.

Methods: A cross-sectional, case-control observational study included 27 patients with ADOA and 27 age- and sex-matched healthy controls.

View Article and Find Full Text PDF

The physical abrasion of plastics from simple everyday entered the food chain, with associated risks recently emphasized. Although many studies have reported the adverse effects of microplastics (MPs) on human, the reproductive implications of continuous exposure to physically abraded polyethylene terephthalate (PET)-MPs remain unexplored. Ingestion of physically abraded PET-MPs (size range: 50-100 µm) in mice from 5 to 34 weeks of age at an annual intake relevant dose of MPs (5 mg week) significantly impaired male reproductive function.

View Article and Find Full Text PDF

An Albumin-Photosensitizer Supramolecular Assembly with Type I ROS-Induced Multifaceted Tumor Cell Deaths for Photodynamic Immunotherapy.

Adv Sci (Weinh)

January 2025

Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China.

Photodynamic therapy holds great potentials in cancer treatment, yet its effectiveness in hypoxic solid tumor is limited by the oxygen-dependence and insufficient oxidative potential of conventional type II reactive oxygen species (ROS). Herein, the study reports a supramolecular photosensitizer, BSA@TPE-BT-SCT NPs, through encapsulating aggregation-enhanced emission photosensitizer by bovine serum albumin (BSA) to significantly enhance ROS, particularly less oxygen-dependent type I ROS for photodynamic immunotherapy. The abundant type I ROS generated by BSA@TPE-BT-SCT NPs induce multiple forms of programmed cell death, including apoptosis, pyroptosis, and ferroptosis.

View Article and Find Full Text PDF

Predicting Drug-Drug Interactions (DDIs) enables cost reduction and time savings in the drug discovery process, while effectively screening and optimizing drugs. The intensification of societal aging and the increase in life stress have led to a growing number of patients suffering from both heart disease and depression. These patients often need to use cardiovascular drugs and antidepressants for polypharmacy, but potential DDIs may compromise treatment effectiveness and patient safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!