Endocrine disrupting potency and toxicity of novel sophorolipid quaternary ammonium salts.

Ecotoxicology

Faculty of Engineering and Architecture, Department of Materials, Textile and Chemical Engineering, Ghent University, Technologiepark 914, B-9052, Ghent-Zwijnaarde, Belgium.

Published: May 2021

A new class of biosurfactants, namely quaternary ammonium sophorolipids (SQAS), suitable for pharmaceutical applications, was tested for the evaluation of their (anti)estrogenic and (anti)androgenic potency with the help of YES/YAS assays. Also their toxicity towards yeasts (Saccharomyces cerevisiae) and bacteria (Escherichia coli) was checked. The results achieved for SQAS, which can be regarded as potential micropollutants, were compared with those obtained for two well-known micropollutants diclofenac and 17α-ethinylestradiol subjected to the same testing procedures. This work demonstrated that acetylation of the hydroxyl group of the carbohydrate head of SQAS decreased the toxicity of this class of biosurfactants towards Saccharomyces cerevisiae. Furthermore, it contributed to the decrease of their endocrine disrupting potency. None of the SQAS studied showed clear agonist activity for female or male hormones. SQAS1 and SQAS2 revealed weak antiestrogenic and antiandrogenic potency. All of these properties were weaker, not only to the potency of the appropriate positive control in the antagonists bioassays, but also compared to the potency of other tested compounds, i.e. DCF and EE2. SQAS3 possessed most probably inhibitory activity towards male hormones. Moreover, cytotoxicity of two out of four studied SQAS at the highest concentrations towards the strains of Saccharomyces cerevisiae interfered with the endocrine disruption activity. It would be also worth studying it with the use of another endocrine activity test.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8060166PMC
http://dx.doi.org/10.1007/s10646-021-02378-6DOI Listing

Publication Analysis

Top Keywords

saccharomyces cerevisiae
12
endocrine disrupting
8
disrupting potency
8
quaternary ammonium
8
class biosurfactants
8
antiestrogenic antiandrogenic
8
antiandrogenic potency
8
male hormones
8
potency
6
sqas
5

Similar Publications

Declines in lysosomal acidification and function with aging are observed in organisms ranging from yeast to humans. V-ATPases play a central role in organelle acidification, and V-ATPase activity is regulated by reversible disassembly in many different settings. Using the yeast Saccharomyces cerevisiae as a replicative aging model, we demonstrate that V-ATPases disassemble into their V and V subcomplexes in aging cells, with release of V subunit C (Vma5) from the lysosome-like vacuole into the cytosol.

View Article and Find Full Text PDF

Deletion of FgAtg27 decreases the pathogenicity of Fusarium graminearum through influence autophagic process.

Int J Biol Macromol

January 2025

Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China. Electronic address:

Autophagy is a conserved and unique degradation system in eukaryotic cells, which plays crucial roles in the growth, development and pathogenesis of Fungi. Despite that, it is poorly understood in Fusarium graminearum currently. Here, we identified an autophagy gene FgAtg27 from F.

View Article and Find Full Text PDF

Cell-free enzyme systems have emerged as a promising approach for producing various biometabolites, offering several advantages over traditional whole-cell systems. This study presents an approach to producing nicotinamide mononucleotide (NMN) by combining a Saccharomyces cerevisiae cell-free enzyme with a recombinant Escherichia coli cell-free enzyme. The system leverages the ATP generated by yeast during ethanol fermentation to produce NMN in the presence of nicotinamide (NAM) as a substrate.

View Article and Find Full Text PDF

Dual modes of DNA N-methyladenine maintenance by distinct methyltransferase complexes.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.

Stable inheritance of DNA N-methyladenine (6mA) is crucial for its biological functions in eukaryotes. Here, we identify two distinct methyltransferase (MTase) complexes, both sharing the catalytic subunit AMT1, but featuring AMT6 and AMT7 as their unique components, respectively. While the two complexes are jointly responsible for 6mA maintenance methylation, they exhibit distinct enzymology, DNA/chromatin affinity, genomic distribution, and knockout phenotypes.

View Article and Find Full Text PDF

Although we have a good understanding of how phenotypic plasticity evolves in response to abiotic environments, we know comparatively less about responses to biotic interactions. We experimentally tested how competition and mutualism affected trait and plasticity evolution of pairwise communities of genetically modified brewer's yeast. We quantified evolutionary changes in growth rate, resource use efficiency (RUE), and their plasticity in strains evolving alone, with a competitor, and with a mutualist.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!