AI Article Synopsis

  • Extraintestinal pathogenic Escherichia coli (ExPEC) leads to various infections, with rising multidrug resistance posing treatment challenges, making them a concern for global health.
  • A study focused on urine isolates from Switzerland identified a high prevalence of the O25B serotype linked to a new E. coli clone, leading to the development of an O25B glycoconjugate vaccine.
  • The vaccine was engineered by integrating the O antigen into an E. coli strain and conjugating it to a carrier protein, confirming the structure for potential future use in a multivalent vaccine against ExPEC.

Article Abstract

Extraintestinal pathogenic Escherichia coli (ExPEC) cause a wide range of clinical diseases such as bacteremia and urinary tract infections. The increase of multidrug resistant ExPEC strains is becoming a major concern for the treatment of these infections and E. coli has been identified as a critical priority pathogen by the WHO. Therefore, the development of vaccines has become increasingly important, with the surface lipopolysaccharide constituting a promising vaccine target. This study presents genetic and structural analysis of clinical urine isolates from Switzerland belonging to the serotype O25. Approximately 75% of these isolates were shown to correspond to the substructure O25B only recently described in an emerging clone of E. coli sequence type 131. To address the high occurrence of O25B in clinical isolates, an O25B glycoconjugate vaccine was prepared using an E. coli glycosylation system. The O antigen cluster was integrated into the genome of E. coli W3110, thereby generating an E. coli strain able to synthesize the O25B polysaccharide on a carrier lipid. The polysaccharide was enzymatically conjugated to specific asparagine side chains of the carrier protein exotoxin A (EPA) of Pseudomonas aeruginosa by the PglB oligosaccharyltransferase from Campylobacter jejuni. Detailed characterization of the O25B-EPA conjugate by use of physicochemical methods including NMR and GC-MS confirmed the O25B polysaccharide structure in the conjugate, opening up the possibility to develop a multivalent E. coli conjugate vaccine containing O25B-EPA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260533PMC
http://dx.doi.org/10.1007/s10719-021-09985-9DOI Listing

Publication Analysis

Top Keywords

coli
8
o25b polysaccharide
8
o25b
6
development characterization
4
characterization coli
4
coli o25b
4
o25b bioconjugate
4
vaccine
4
bioconjugate vaccine
4
vaccine extraintestinal
4

Similar Publications

Efficient Orthogonal Spin Labeling of Proteins via Aldehyde Cyclization for Pulsed Dipolar EPR Distance Measurements.

J Am Chem Soc

December 2024

State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.

Pulsed dipolar electron paramagnetic resonance (PD-EPR) measurement is a powerful technique for characterizing the interactions and conformational changes of biomolecules. The extraction of these distance restraints from PD-EPR experiments relies on manipulation of spin-spin pairs. The orthogonal spin labeling approach offers unique advantages by providing multiple distances between different spin-spin pairs.

View Article and Find Full Text PDF

Epidemiology of late-onset sepsis in Malaysian neonatal intensive care units, 2015-2020.

Malays J Pathol

December 2024

Tengku Ampuan Rahimah Hospital, Department of Paediatrics, Ministry of Health, Klang, Selangor, Malaysia.

Introduction: To determine the epidemiology of blood culture-positive late-onset sepsis (LOS, >72 hours of age) in 44 Malaysian neonatal intensive care units (NICUs).

Materials And Methods: Study Design: Multicentre retrospective observational study using data from the Malaysian National Neonatal Registry.

Participants: 739486 neonates (birthweight ≥500g, gestation ≥22 weeks) born and admitted in 2015-2020.

View Article and Find Full Text PDF

Background: Developing effective targeted treatment approaches to overcome drug resistance remains a crucial goal in cancer research. Immunotoxins have dual functionality in cancer detection and targeted therapy.

Objective: This study aimed to engineer a recombinant chimeric fusion protein by combining a nanobody-targeting domain with an exotoxin effector domain.

View Article and Find Full Text PDF

Metabolic Engineering of Corynebacterium glutamicum for High-Level Production of 1,5-Pentanediol, a C5 Diol Platform Chemical.

Adv Sci (Weinh)

December 2024

Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.

The biobased production of chemicals is essential for advancing a sustainable chemical industry. 1,5-Pentanediol (1,5-PDO), a five-carbon diol with considerable industrial relevance, has shown limited microbial production efficiency until now. This study presents the development and optimization of a microbial system to produce 1,5-PDO from glucose in Corynebacterium glutamicum via the l-lysine-derived pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!