The brominated flame retardant bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBPH) is used widely in consumer items including polyurethane foam used in furniture. Information on its bioaccumulation in aquatic species is limited. In the current study, sediment bioaccumulation tests with the oligochaete Lumbriculus variegatus were performed on a spiked natural sediment equilibrated for 14.5 months. Analysis showed the TBPH used to spike the sediment contained a small amount (0.046% by mass) of mono-(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBMEHP), a potential biotransformation product of the parent chemical. Steady-state biota-sediment accumulation factors (BSAFs) of 0.254 and 1.50 (kg organic carbon/kg lipid) were derived for TBPH and TBMEHP, respectively. TBPH had biphasic elimination behavior where 94% of the body burden was depleted within the first 12 h of elimination (i.e., half-life of 1.2 h or less) and the remaining 6% eliminated very slowly thereafter (half-life of 15 days). There was little evidence for biotransformation of either chemical by L. variegatus. This investigation confirms the extremely hydrophobic behavior of TBPH and its impact on its bioavailability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8168711 | PMC |
http://dx.doi.org/10.1007/s00244-021-00824-4 | DOI Listing |
Pharmacol Biochem Behav
December 2024
Swansea Worm Integrative Research Laboratory (SWIRL), Swansea University Medical School, Swansea University, Wales SA2 8PP, United Kingdom.
Nicotine has been shown to induce profound physiological and behavioural responses in invertebrate model organisms such as Caenorhabditis elegans and Drosophila melanogaster. Lumbriculus variegatus is an aquatic oligochaete worm which we have previously demonstrated has application within pharmacological research. Herein, we demonstrate the presence of endogenous acetylcholine and cholinesterase activity within L.
View Article and Find Full Text PDFEnviron Sci Technol
November 2024
Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
Despite the widespread presence of per- and polyfluoroalkyl substances (PFAS) in freshwater environments, only a few studies have addressed their bioaccumulation in macrophytes and benthic invertebrates. This study therefore aimed at investigating the presence of 40 PFAS in sediments, assessing their bioaccumulation in a rooting macrophyte () and a benthic invertebrate () and examining the effects of the presence and bioturbation activity of the invertebrate on PFAS bioaccumulation in the plants. The macrophytes were exposed to sediments originating from a reference and a PFAS-contaminated site.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department Aquatic Ecotoxicology, Goethe University Frankfurt, Max-von-Laue Straße 13, 60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue Straße 13, 60438 Frankfurt am Main, Germany.
Genes Brain Behav
October 2024
Swansea Worm Integrative Research Laboratory (SWIRL), Swansea University Medical School, Swansea University, Swansea, Wales, UK.
Ethanol is one of the most widely used drugs in the world. Ethanol induces profound physiological and behavioural responses in invertebrate model organisms, such as Caenorhabditis elegans and Drosophila melanogaster. Lumbriculus variegatus (Annelida, Oligochaete) is an aquatic worm which shows behavioural responses to common drugs and thus is potentially useful in pharmacological research.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, FI-80101 Joensuu, Finland.
Sediments act as important sinks for metals and their radionuclides in aquatic environments and play a crucial role in their transfer and uptake to aquatic organisms. Traditional radioecological models use radionuclide concentrations in water to predict concentrations in aquatic organisms. In this study, we investigated the distribution of radioecologically important metals (Ba, Co, Ni, Sr, U) among sediment, porewater and hypolimnion over seasons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!