Person reidentification (Re-ID) aims at matching images of the same identity captured from the disjoint camera views, which remains a very challenging problem due to the large cross-view appearance variations. In practice, the mainstream methods usually learn a discriminative feature representation using a deep neural network, which needs a large number of labeled samples in the training process. In this article, we design a simple yet effective multinetwork collaborative feature learning (MCFL) framework to alleviate the data annotation requirement for person Re-ID, which can confidently estimate the pseudolabels of unlabeled sample pairs and consistently learn the discriminative features of input images. To keep the precision of pseudolabels, we further build a novel self-paced collaborative regularizer to extensively exchange the weight information of unlabeled sample pairs between different networks. Once the pseudolabels are correctly estimated, we take the corresponding sample pairs into the training process, which is beneficial to learn more discriminative features for person Re-ID. Extensive experimental results on the Market1501, DukeMTMC, and CUHK03 data sets have shown that our method outperforms most of the state-of-the-art approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2021.3061164DOI Listing

Publication Analysis

Top Keywords

learn discriminative
12
sample pairs
12
multinetwork collaborative
8
collaborative feature
8
feature learning
8
person reidentification
8
training process
8
person re-id
8
unlabeled sample
8
discriminative features
8

Similar Publications

Unleashing the Potential of Pre-Trained Diffusion Models for Generalizable Person Re-Identification.

Sensors (Basel)

January 2025

College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China.

Domain-generalizable re-identification (DG Re-ID) aims to train a model on one or more source domains and evaluate its performance on unseen target domains, a task that has attracted growing attention due to its practical relevance. While numerous methods have been proposed, most rely on discriminative or contrastive learning frameworks to learn generalizable feature representations. However, these approaches often fail to mitigate shortcut learning, leading to suboptimal performance.

View Article and Find Full Text PDF

Aiming at the problems caused by a lack of feature matching due to occlusion and fixed model parameters in cross-domain person re-identification, a method based on multi-branch pose-guided occlusion generation is proposed. This method can effectively improve the accuracy of person matching and enable identity matching even when pedestrian features are misaligned. Firstly, a novel pose-guided occlusion generation module is designed to enhance the model's ability to extract discriminative features from non-occluded areas.

View Article and Find Full Text PDF

This paper presents an approach for event recognition in sequential images using human body part features and their surrounding context. Key body points were approximated to track and monitor their presence in complex scenarios. Various feature descriptors, including MSER (Maximally Stable Extremal Regions), SURF (Speeded-Up Robust Features), distance transform, and DOF (Degrees of Freedom), were applied to skeleton points, while BRIEF (Binary Robust Independent Elementary Features), HOG (Histogram of Oriented Gradients), FAST (Features from Accelerated Segment Test), and Optical Flow were used on silhouettes or full-body points to capture both geometric and motion-based features.

View Article and Find Full Text PDF

Accurately identifying and discriminating between different brain states is a major emphasis of functional brain imaging research. Various machine learning techniques play an important role in this regard. However, when working with a small number of study participants, the lack of sufficient data and achieving meaningful classification results remain a challenge.

View Article and Find Full Text PDF

Application of Additive Manufacturing and Deep Learning in Exercise State Discrimination.

Sensors (Basel)

January 2025

Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.

With the rapid development of sports technology, smart wearable devices play a crucial role in athletic training and health management. Sports fatigue is a key factor affecting athletic performance. Using smart wearable devices to detect the onset of fatigue can optimize training, prevent excessive fatigue and resultant injury, and increase efficiency and safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!