Electronic metal-support interactions (EMSI) describe the electron flow between metal sites and a metal oxide support. It is generally used to follow the mechanism of redox reactions. In this study of CuO-CeO redox, an additional flow of electrons from metallic Cu to surface carbon species is observed via a combination of operando X-ray absorption spectroscopy, synchrotron X-ray powder diffraction, near ambient pressure near edge X-ray absorption fine structure spectroscopy, and diffuse reflectance infrared Fourier transform spectroscopy. An electronic metal-support-carbon interaction (EMSCI) is proposed to explain the reaction pathway of CO oxidation. The EMSCI provides a complete picture of the mass and electron flow, which will help predict and improve the catalytic performance in the selective activation of CO , carbonate, or carbonyl species in C1 chemistry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8251948PMC
http://dx.doi.org/10.1002/anie.202102570DOI Listing

Publication Analysis

Top Keywords

surface carbon
8
carbon species
8
redox reactions
8
electron flow
8
x-ray absorption
8
electrophilicity surface
4
species redox
4
reactions cuo-ceo
4
cuo-ceo catalysts
4
catalysts electronic
4

Similar Publications

Additive CHARMM Force Field for Pterins and Folates.

J Comput Chem

January 2025

Laboratoire d'Optique et Biosciences (CNRS UMR7645, INSERM U1182), Ecole Polytechnique, Institut polytechnique de Paris, Palaiseau, France.

Folates comprise a crucial class of biologically active compounds related to folic acid, playing a vital role in numerous enzymatic reactions. One-carbon metabolism, facilitated by the folate cofactor, supports numerous physiological processes, including biosynthesis, amino acid homeostasis, epigenetic maintenance, and redox defense. Folates share a common pterin heterocyclic ring structure capable of undergoing redox reactions and existing in various protonation states.

View Article and Find Full Text PDF

An electrochemical aptasensor has been developed specifically for the sensitive and selective determination of ochratoxin A (OTA), one of the most important mycotoxins. The aptasensor utilizes a glassy carbon electrode that has been modified with toluidine blue (TB) encapsulated in a Zn-based metal-organic framework (TB@Zn-MOF). The results demonstrate that in the presence of OTA, the peak current of the differential pulse voltammogram (DPV) related to TB oxidation is notably decreased.

View Article and Find Full Text PDF

A novel electrochemiluminescence (ECL) biosensor was developed for the ultrasensitive detection of miRNA-155, based on the synergistic combination of multifunctional nanomaterials. The biosensor employed a conductive metal-organic framework (MOF), Ni(HAB) (HAB = hexaaminobenzene), as the substrate material. The unique π-electron conjugated structure of Ni(HAB) endowed the biosensor with excellent electron transport properties, significantly enhancing its sensitivity.

View Article and Find Full Text PDF

Bright NIR-II emissive cyanine dye-loaded lipoprotein-mimicking nanoparticles for fluorescence imaging-guided and targeted NIR-II photothermal therapy of subcutaneous glioblastoma.

J Nanobiotechnology

December 2024

School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China.

Cyanine dye-containing nanoparticles have widely been used in "all-in-one" NIR fluorescence imaging (FI)-guided photothermal therapy (PTT) because of their intrinsically large extinction coefficient and available physical and chemical modulation methods to tune absorption and emission wavelengths. The combination of good brightness and excellent tumor-targeting capacity is the key to realize efficient NIR-II FI-guided PTT. In this study, by covalently decorating NIR-II absorptive cyanine dyes with bulky AIE motify, we demonstrate how steric hindrance suppresses π-π stacking-induced fluorescence quenching and contributes to the good brightness of NIR-II FI of subcutaneous glioblastoma.

View Article and Find Full Text PDF

Quantitatively tracing the decomposition of endogenous particulate organic carbon during sinking in (sub-)deep reservoirs: Using radiocarbon isotopes ΔC.

Water Res

December 2024

State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550001, PR China; University of Chinese Academy of Sciences, College of Resources and Environment, Beijing 100049, PR China.

The rapid expansion of reservoirs, coupled with increasing eutrophication, has profoundly influenced regional and global carbon cycles. To precisely assess the carbon sink potential of reservoirs, it is crucial to quantify the decomposition of endogenous particulate organic carbon (POC) during the deposition and sinking of particulate matter in reservoirs. This is particularly important in the context of rising temperatures and intensified human activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!