Controlling metal-support interactions is important for tuning the catalytic properties of supported metal catalysts. Here, premade Pd particles are supported on stable polymers containing different ligating functionalities to control the metal-polymer interactions and their catalytic properties in industrially relevant acetylene partial hydrogenation. The polymers containing strongly ligating groups (e.g., Ar-SH and Ar-S-Ar) can form a polymer overlayer on the Pd surface, which enables selective acetylene adsorption and partial hydrogenation to ethylene without deactivation. In contrast, polymers with weakly ligating groups (e.g., Ar-O-Ar) do not form an overlayer, resulting in non-selective hydrogenation and fast deactivation, similar to Pd catalysts on conventional inorganic supports. The results imply that tuning the metal-polymer interactions via rational polymer design can provide an efficient way of synthesizing selective and stable catalysts for hydrogenation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202100814DOI Listing

Publication Analysis

Top Keywords

catalytic properties
8
polymers ligating
8
metal-polymer interactions
8
partial hydrogenation
8
ligating groups
8
hydrogenation
5
tailoring dynamic
4
dynamic metal-polymer
4
metal-polymer interaction
4
interaction improve
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!