As the predominant antibody type in mucosal secretions, human colostrum, and breast milk, secretory IgA (SIgA) plays a central role in safeguarding the intestinal epithelium of newborns from invasive enteric pathogens like the Gram-negative bacterium serovar Typhimurium (STm). SIgA is a complex molecule, consisting of an assemblage of two or more IgA monomers, joining (J)-chain, and secretory component (SC), whose exact functions in neutralizing pathogens are only beginning to be elucidated. In this study, we produced and characterized a recombinant human SIgA variant of Sal4, a well-characterized monoclonal antibody (mAb) specific for the O5-antigen of STm lipopolysaccharide (LPS). We demonstrate by flow cytometry, light microscopy, and fluorescence microscopy that Sal4 SIgA promotes the formation of large, densely packed bacterial aggregates . In a mouse model, passive oral administration of Sal4 SIgA was sufficient to entrap STm within the intestinal lumen and reduce bacterial invasion into gut-associated lymphoid tissues by several orders of magnitude. Bacterial aggregates induced by Sal4 SIgA treatment in the intestinal lumen were recalcitrant to immunohistochemical staining, suggesting the bacteria were encased in a protective capsule. Indeed, a crystal violet staining assay demonstrated that STm secretes an extracellular matrix enriched in cellulose following even short exposures to Sal4 SIgA. Collectively, these results demonstrate that recombinant human SIgA recapitulates key biological activities associated with mucosal immunity and raises the prospect of oral passive immunization to combat enteric diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154420 | PMC |
http://dx.doi.org/10.1021/acsinfecdis.0c00842 | DOI Listing |
Front Immunol
June 2023
Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY, United States.
Introduction: Secretory IgA (SIgA) protects the intestinal epithelium from enteric pathogens such as Salmonella enterica serovar Typhimurium (STm) through a process known as immune exclusion, where invading bacteria are aggregated via antibody cross-linking, encased in mucus, and then cleared from the intestinal tract via peristalsis. At high cell densities, the STm aggregates form a tightly packed network that is reminiscent of early bacterial biofilms. However, the underlying mechanism of how SIgA mediates this transition from a motile and invasive state to an avirulent sessile state in STm is currently unknown.
View Article and Find Full Text PDFInfect Immun
June 2022
Department of Biological and Environmental Engineering, Cornell Universitygrid.5386.8, Ithaca, New York, USA.
Secretory IgA (SIgA) is the most abundant antibody type in intestinal secretions where it contributes to safeguarding the epithelium from invasive pathogens like the Gram-negative bacterium, Salmonella enterica serovar Typhimurium (STm). For example, we recently reported that passive oral administration of the recombinant monoclonal SIgA antibody, Sal4, to mice promotes STm agglutination in the intestinal lumen and restricts bacterial invasion of Peyer's patch tissues. In this report, we sought to recapitulate Sal4-mediated protection against STm in human Enteroids and human intestinal organoids (HIOs) as models to decipher the molecular mechanisms by which antibodies function in mucosal immunity in the human gastrointestinal tract.
View Article and Find Full Text PDFACS Infect Dis
May 2021
Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York 12208, United States.
As the predominant antibody type in mucosal secretions, human colostrum, and breast milk, secretory IgA (SIgA) plays a central role in safeguarding the intestinal epithelium of newborns from invasive enteric pathogens like the Gram-negative bacterium serovar Typhimurium (STm). SIgA is a complex molecule, consisting of an assemblage of two or more IgA monomers, joining (J)-chain, and secretory component (SC), whose exact functions in neutralizing pathogens are only beginning to be elucidated. In this study, we produced and characterized a recombinant human SIgA variant of Sal4, a well-characterized monoclonal antibody (mAb) specific for the O5-antigen of STm lipopolysaccharide (LPS).
View Article and Find Full Text PDFPLoS Negl Trop Dis
March 2020
Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America.
Non-typhoidal Salmonella enterica strains, including serovar Typhimurium (STm), are an emerging cause of invasive disease among children and the immunocompromised, especially in regions of sub-Saharan Africa. STm invades the intestinal mucosa through Peyer's patch tissues before disseminating systemically. While vaccine development efforts are ongoing, the emergence of multidrug resistant strains of STm affirms the need to seek alternative strategies to protect high-risk individuals from infection.
View Article and Find Full Text PDFInfect Immun
September 2008
Biomedical Sciences Program, University at Albany School of Public Health, Albany, New York 12201, USA.
Secretory immunoglobulin A (SIgA) antibodies directed against the O antigen of lipopolysaccharide (LPS) are the primary determinants of mucosal immunity to gram-negative enteric pathogens. However, the underlying mechanisms by which these antibodies interfere with bacterial colonization and invasion of intestinal epithelial cells are not well understood. In this study, we report that Sal4, a protective, anti-O5-specific monoclonal IgA, is a potent inhibitor of Salmonella enterica serovar Typhimurium flagellum-based motility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!