Relationship between functional threshold power, ventilatory threshold and respiratory compensation point in road cycling.

J Sports Med Phys Fitness

Section of Physical Education and Sports, Department of Physiatry and Nursery, Faculty of Health and Sport Sciences, University of Zaragoza, Huesca, Spain.

Published: May 2022

Background: The purpose of this study was to assess the relationship between power output and relative power output at the functional threshold power, ventilatory threshold and respiratory compensation point in road cyclists.

Methods: Forty-six road cyclists (age 38±9 years; height 177±9 cm; body mass 71.4±8.6 kg; Body Mass Index 22.7±2.2 kg·m; fat mass 7.8±4%, V̇O2max 61.1±9.1 mL·min·kg) performed a graded exercise test in which power output and relative power output at the ventilatory landmarks were identified. Functional threshold power was established as 95% of the power output during a 20-minute test.

Results: Power output and relative power output at the functional threshold power were higher than at the ventilatory threshold (P<0.001). There were very large to near perfect correlations for power output (95% CI for r from 0.71 to 0.9) and relative power output (95% CI for r from 0.79 to 0.93) at the functional threshold power and respiratory compensation point. Mean bias in power output and relative power output measured at RCP compared with FTP was not significant (mean bias 95% CI from -7 to 10 W and -0.1 to 0.1 W/kg, respectively).

Conclusions: Power output and relative power output at the functional threshold power are higher than at the ventilatory threshold. Power output and relative power output at the functional threshold power and respiratory compensation point are strongly related, but caution is required when using both concepts indistinctly.

Download full-text PDF

Source
http://dx.doi.org/10.23736/S0022-4707.21.12285-6DOI Listing

Publication Analysis

Top Keywords

power output
28
functional threshold
16
threshold power
16
ventilatory threshold
12
output relative
12
relative power
12
power
11
power ventilatory
8
threshold respiratory
8
respiratory compensation
8

Similar Publications

In this paper, a microwave thermal imaging system (MTIS) has been presented for debonding detection of radar absorbing materials (RAMs). First, an overview of the mechanism underlying microwave heating and the fundamental principle of defect detection within RAMs is presented. Then, a multifunctional MTIS capable of performing both microwave lock-in thermography (MLIT) and long-pulse microwave thermography (LPMT) has been introduced, specifically tailored for the in situ inspection of RAMs.

View Article and Find Full Text PDF

Leech-Inspired Amphibious Soft Robot Driven by High-Voltage Triboelectricity.

Adv Mater

January 2025

School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, P. R. China.

Leech locomotion, characterized by alternating sucker attachment and body contraction provides high adaptability and stability on complex terrains. Herein, a leech-inspired triboelectric soft robot is proposed for the first time, capable of amphibious movement, climbing, and load-carrying crawling. A high-performance triboelectric bionic robot system is developed to drive and control electro-responsive soft robots.

View Article and Find Full Text PDF

Optimization of the green synthesis of gold nanorods using aqueous extract of peeled sour guava as a source of antioxidants.

PLoS One

January 2025

Grupo de Investigación en Síntesis Orgánica, de Polímeros y Biotecnología Aplicada-SINBIOTEC, Escuela de Ingeniería y Ciencias Básicas, Universidad EIA, Colombia.

Obtaining gold nanorods (AuNRs) through biosynthesis is an alternative that replaces the traditional use of ascorbic acid with chemical compounds such as polyphenols, owing to their notable antioxidant properties. Therefore, we developed an AuNR biosynthesis method using an aqueous extract of sour guava (Psidium araca). Initially, a study was conducted to determine the antioxidant capacity of different parts of the fruit (pulp and peel) over 14 days.

View Article and Find Full Text PDF

Independent pitch control (IPC) is a crucial technology for enhancing the performance of wind turbines, optimizing the power output, and reducing the loads by managing each blade. This paper explores the primary vibration modes of semi-submersible wind turbines under wind-wave coupling. Given the effectiveness of pitch control in vibration suppression, this paper addresses the limitations of conventional collective pitch control (CPC) by designing an independent pitch control method based on an equivalent wind speed model (EWIPC).

View Article and Find Full Text PDF

Modeling and dynamic analysis of split torsion transmission system considering backlash and center distance errors.

Sci Rep

January 2025

National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.

The split torque gear transmission holds significant potential for use in helicopter main reducer transmission systems due to its benefits of low noise, high power-to-weight ratio, and high reliability. In this context, a nonlinear dynamic equation was formulated in the present study for a single-input dual-output gear split-torque transmission system, and the system's dynamic behavior was examined under the effects of center distance error and backlash using the fourth-order Runge-Kutta method. The findings indicate that the impact of center distance error on the system's dynamics is linear, whereas the effect of backlash is nonlinear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!