Background: Rapid point-of-care (POC) detection of Streptococcus equi subsp. equi (S. equi) would theoretically reduce the spread of strangles by identifying index and carrier horses.

Hypothesis: That the eqbE isothermal amplification (LAMP) assay, and the same eqbE LAMP assay tested in a microfluidic device format, are comparable to a triplex real-time quantitative polymerase chain reaction (qPCR) assay that is commonly used in diagnostic labs.

Samples: Sixty-eight guttural pouch lavage (GPL) specimens from horses recovering from strangles.

Methods: Guttural pouch lavage specimens were tested for S. equi retrospectively using the benchtop eqbE LAMP, the eqbE LAMP microfluidic device, and compared to the triplex qPCR, that detects 2 S. equi-specific genes, eqbE and SEQ2190, as the reference standard using the receiver operating characteristic area under the curve (ROC).

Results: The 27/68 specimens were positive by benchtop eqbE LAMP, 31/64 by eqbE LAMP microfluidic device, and 12/67 by triplex qPCR. Using the triplex PCR as the reference, the benchtop eqbE LAMP showed excellent discrimination (ROC Area = 0.813, 95% confidence interval [CI] = 0.711-0.915) as did the LAMP microfluidic device (ROC Area = 0.811, 95% CI = 0.529-0.782). There was no significant difference between the benchtop LAMP and LAMP microfluidic device (ROC Area 0.813 ± 0.055 vs 0.811 ± 0.034, P = .97).

Conclusions: The eqbE LAMP microfluidic device detected S. equi in GPL specimens from convalescent horses. This assay shows potential for development as a POC device for rapid, sensitive, accurate, and cost-efficient detection of S. equi.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163136PMC
http://dx.doi.org/10.1111/jvim.16105DOI Listing

Publication Analysis

Top Keywords

microfluidic device
28
eqbe lamp
28
lamp microfluidic
20
guttural pouch
12
pouch lavage
12
benchtop eqbe
12
roc area
12
lamp
11
eqbe
9
detection streptococcus
8

Similar Publications

An innovative magnetic immunoassay was developed for the voltammetric detection of carbohydrate antigen-125 (CA-125) on a home-made microfluidic device including a multisyringe pump, selection valve and magneto-controlled detection cell. Two kinds of biofunctionalized nanostructures including anti-CA-125 capture antibody-conjugated magnetic beads and anti-CA-125 detection antibody-labeled silver-polypyrrole (Ag-PPy) nanohybrids were utilized for a sandwiched immunoreaction in the presence of CA-125. With the help of an external magnet, the formed magnetic immunocomplexes were attached to the sensing interface to activate the electrical contact between Ag-PPy nanohybrids and the base electrode, thus resulting in the switching on of the sensor circuit for the generation of voltammetric signals thanks to electroactive Ag-PPy nanohybrids.

View Article and Find Full Text PDF

Despite advances in healthcare, bacterial pathogens remain a severe global health threat, exacerbated by rising antibiotic resistance. Lower respiratory tract infections, with their high death toll, are of particular concern. Accurately replicating host-pathogen interactions in laboratory models is crucial for understanding these diseases and evaluating new therapies.

View Article and Find Full Text PDF

This study advances microfluidic probe (MFP) technology through the development of a 3D-printed Microfluidic Mixing Probe (MMP), which integrates a built-in pre-mixer network of channels and features a lined array of paired injection and aspiration apertures. By combining the concepts of hydrodynamic flow confinements (HFCs) and "Christmas-tree" concentration gradient generation, the MMP can produce multiple concentration-varying flow dipoles, ranging from 0 to 100%, within an open microfluidic environment. This innovation overcomes previous limitations of MFPs, which only produced homogeneous bioreagents, by utilizing the pre-mixer to create distinct concentration of injected biochemicals.

View Article and Find Full Text PDF

Lab-on-paper for molecular testing with USB-powered isothermal amplification and fluidic control.

Mikrochim Acta

January 2025

Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea.

The global healthcare market increasingly demands affordable molecular diagnostics for field testing. To address this need, we introduce a lab-on-paper (LOP) platform that integrates isothermal amplification with a specially designed paper strip for molecular testing through an automated microfluidics process. The LOP system is engineered for rapid, cost-effective, and highly sensitive detection, using USB-powered thermal management and a wax valve mechanism.

View Article and Find Full Text PDF

Organ-on-a-chip culture systems using human organ tissues provide invaluable preclinical insights into systemic functions . This study aimed to develop a novel human testicular tissue chip within a microfluidic device employing computer-aided design software and photolithography technology. Polydimethylsiloxane was used as the primary material to ensure marked gas permeability and no biotoxicity, enabling effective mimicry of the testicular microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!