Objective: To expand the clinical phenotype of the X-linked -related neurodevelopmental disorder in 33 individuals.
Methods: Participants were diagnosed with pathogenic or likely pathogenic variants in using American College of Medical Genetics and Genomics/Association of Molecular Pathology criteria, largely identified via clinical exome sequencing. Genetic reports were reviewed. Clinical data were collected by retrospective chart review and caregiver report including standardized parent report measures.
Results: We expand our clinical characterization of -related disorders to include 33 individuals, aged 2-38 years, both females and males, with 11 different de novo missense variants, most within the nuclear localization signal. The major features of the phenotype include developmental delay/intellectual disability, severe language impairment, motor problems, growth, and musculoskeletal disturbances. Minor features include dysmorphic features, epilepsy, neuropsychiatric diagnoses such as autism spectrum disorder, and cortical visual impairment. Although rare, we report early stroke and premature death with this condition.
Conclusions: The spectrum of X-linked -related disorders continues to expand as the allelic spectrum and identification of affected males increases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7954461 | PMC |
http://dx.doi.org/10.1212/NXG.0000000000000551 | DOI Listing |
Epilepsia Open
January 2025
Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.
Protein-activated kinases mediate spine morphogenesis and synaptic plasticity. PAK3 is part of the p21-activated kinases (PAKs) family of Ras-signaling serine/threonine kinases. Pathogenic variants in the X-linked gene PAK3 have been described in patients with neurodevelopmental syndromes.
View Article and Find Full Text PDFInt J Cardiovasc Imaging
January 2025
Michigan Medicine, University Hospital, Floor B1 Reception C 1500 E Medical Center Dr SPC 5030, Ann Arbor, MI, 48109, USA.
Anderson-Fabry disease (AFD) is a X-linked lysosomal storage disorder that can result in cardiac dysfunction including left ventricular hypertrophy (LVH) and conduction abnormalities (Frontiers in cardiovascular medicine vol. 10) [1]. The manifestations of AFD in women may be isolated to one organ and occur late in life due to the random inactivation of the X chromosome.
View Article and Find Full Text PDFClin Kidney J
January 2025
State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China.
Background: Hereditary nephropathy is an important cause of renal insufficiency and end-stage renal disease. Therefore, for couples with monogenic nephropathy, preventing transmission of the disease to offspring is urgent. Preimplantation genetic testing for monogenic disorders (PGT-M) is a means to prevent intergenerational inheritance by screening and transplanting normal embryos.
View Article and Find Full Text PDFBrain Commun
January 2025
Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, CanadaR3E 0T6.
Huntington's disease is caused by a CAG repeat in the gene. Repeat length correlates inversely with the age of onset but only explains part of the observed clinical variability. Genome-wide association studies highlight DNA repair genes in modifying disease onset, but further research is required to identify causal genes and evaluate their tractability as drug targets.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.
The presence of specific genetic mutations in patients with glioblastoma multiforme (GBM) is associated with improved survival outcomes. Disruption of the DNA damage response (DDR) pathway in tumor cells enhances the effectiveness of radiotherapy drugs, while increased mutational burden following tumor cell damage also facilitates the efficacy of immunotherapy. The ATRX gene, located on chromosome X, plays a crucial role in DDR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!