Estimation Model for Bread Quality Proficiency Using Fuzzy Weighted Relevance Vector Machine Classifier.

Appl Bionics Biomech

Department of Computer Engineering and Mathematics, Rovira i Virgili University, 43007, Spain.

Published: February 2021

Estimation of the quality of food products is vital in determining the properties and validity of the food concerning the baking and other manufacturing processes. This article considers the quality estimation of the wheat bread that is baked under standard conditions. The sensory data are collected in real-time, and the obtained data are analysed using the efficient data analytics to predict the quality of the product. The dataset obtained consists of 300 bread samples prepared in 15 days whose vital physical, chemical, and rheological measures are sensed. The measures of the read are obtained through sensory tools and are gathered as a dataset. The obtained data are generally raw, and hence, the required features are obtained through dimensionality reduction using the Linear Discriminant Analysis (LDA). The processed data and the attributes are given as input to the classifier to obtain final estimation results. The efficient Fuzzy Weighted Relevance Vector Machine (FWRVM) classifier model is developed for this achieving this objective. The proposed quality estimation model is implemented using the MATLAB programming environment with the required setting for the FWRVM classifier. The model is trained and tested with the input dataset with data analysis steps. Some state-of-the-art classifiers are also implemented to compare the evaluated performance of the proposed model. The estimation accuracy is obtained by comparing the number of correctly detected bread classes with the wrongly classified breads. The results indicate that the proposed FWRVM-based classifier estimates the quality of the breads with 96.67% accuracy, 96.687% precision, 96.6% recall, and 96.6% F-measure within 8.96726 seconds processing time which is better than the compared Support vector machine (SVM), RVM, and Deep Neural Networks (DNN) classifiers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935609PMC
http://dx.doi.org/10.1155/2021/6670316DOI Listing

Publication Analysis

Top Keywords

vector machine
12
estimation model
8
fuzzy weighted
8
weighted relevance
8
relevance vector
8
quality estimation
8
dataset data
8
fwrvm classifier
8
classifier model
8
estimation
6

Similar Publications

Bidirectional recurrent neural network approach for predicting cervical cancer recurrence and survival.

Sci Rep

December 2024

School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, 47500, Selangor Darul Ehsan, Malaysia.

Cervical cancer is a deadly disease in women globally. There is a greater chance of getting rid of cervical cancer in case of earliest diagnosis. But for some patients, there is a chance of recurrence.

View Article and Find Full Text PDF

Early prediction of patient responses to neoadjuvant chemotherapy (NACT) is essential for the precision treatment of early breast cancer (EBC). Therefore, this study aims to noninvasively and early predict pathological complete response (pCR). We used dynamic ultrasound (US) imaging changes acquired during NACT, along with clinicopathological features, to create a nomogram and construct a machine learning model.

View Article and Find Full Text PDF

This study presents a web application for predicting cardiovascular disease (CVD) and hypertension (HTN) among mine workers using machine learning (ML) techniques. The dataset, collected from 699 participants at the Gol-Gohar mine in Iran between 2016 and 2020, includes demographic, occupational, lifestyle, and medical information. After preprocessing and feature engineering, the Random Forest algorithm was identified as the best-performing model, achieving 99% accuracy for HTN prediction and 97% for CVD, outperforming other algorithms such as Logistic Regression and Support Vector Machines.

View Article and Find Full Text PDF

Background And Purpose: In idiopathic normal pressure hydrocephalus (iNPH) patients, cerebrospinal fluid (CSF) flow is typically evaluated with a cardiac-gated two-dimensional (2D) phase-contrast (PC) MRI through the cerebral aqueduct. This approach is limited by the evaluation of a single location and does not account for respiration effects on flow. In this study, we quantified the cardiac and respiratory contributions to CSF movement at multiple intracranial locations using a real-time 2D PC-MRI and evaluated the diagnostic value of CSF dynamics biomarkers in classifying iNPH patients.

View Article and Find Full Text PDF

Background: This study examined the interhemispheric integration function pattern in patients with iridocyclitis utilizing the voxel-mirrored homotopic connectivity (VMHC) technique. Additionally, we investigated the ability of VMHC results to distinguish patients with iridocyclitis from healthy controls (HCs), which may contribute to the development of objective biomarkers for early diagnosis and intervention in clinical set.

Methods: Twenty-six patients with iridocyclitis and twenty-six matched HCs, in terms of sex, age, and education level, underwent resting-state functional magnetic resonance imaging (fMRI) examinations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!