Immunohistochemistry of aromatic L-amino acid decarboxylase in the cat forebrain.

J Comp Neurol

Département de Médecine Expérimentale, CNRS U1195, INSERM U52, Faculté de Médecine, Université Claude Bernard, Lyon, France.

Published: April 1988

The topographic distribution of aromatic L-amino acid decarboxylase (AADC)-immunoreactive (IR) neurons was investigated in the cat hypothalamus, limbic areas, and thalamus by using specific antiserum raised against porcine kidney AADC. The perikarya and main axons were mapped on an atlas in ten cross-sectional drawings from A8 to A16 of the Horsley Clarke stereotaxic plane. AADC-IR neurons were widely distributed in the anterior brain. They were identified in the posterior hypothalamic area, rostral arcuate nucleus of the hypothalamus, dorsal hypothalamic area, and periventricular complex of the hypothalamus, which contain tyrosine hydroxylase (TH)-IR cells and are known as A11 to A14 dopaminergic cell groups. AADC-IR perikarya were also found in the other hypothalamic areas where few or no TH-IR cells have been reported: the supramamillary nucleus, tuberomamillary nucleus, pre- and anterior mamillary nuclei, caudal arcuate nucleus, dorsal hypothalamic area immediately ventral to the mamillothalamic tract, anterior hypothalamic area, area of the tuber cinereum, retrochiasmatic area, preoptic area, suprachiasmatic and dorsal chiasmatic nuclei. We also identified them in the anterior commissure nucleus, bed nucleus of the stria terminalis, stria terminalis, medial and central amygdaloid nuclei, lateral septal nucleus, and nucleus of the diagonal band of Broca. AADC-IR neurons were localized in the ventromedial part of the thalamus, lateral posterior complex, paracentral nucleus and lateral dorsal nucleus of the thalamus, medial habenula, parafascicular nucleus, subparafascicular nucleus, and periaqueductal gray. Conversely, we detected only a few AADC-IR cells in the supraoptic nucleus whose rostral portion contains TH-IR perikarya. Comments are made on the relative localizations of the AADC-IR and TH-IR neurons, on species differences between the cat and rat, as well as on the possible physiological functions of the enzyme AADC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.902700304DOI Listing

Publication Analysis

Top Keywords

hypothalamic area
16
nucleus
13
aromatic l-amino
8
l-amino acid
8
acid decarboxylase
8
aadc-ir neurons
8
arcuate nucleus
8
dorsal hypothalamic
8
th-ir cells
8
stria terminalis
8

Similar Publications

Opioid reward and deep brain stimulation of the lateral hypothalamic area.

Vitam Horm

January 2025

Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:

Opioid use disorder (OUD) is considered a global health issue that affects various aspects of patients' lives and poses a considerable burden on society. Due to the high prevalence of remissions and relapses, novel therapeutic approaches are required to manage OUD. Deep brain stimulation (DBS) is one of the most promising clinical breakthroughs in translational neuroscience.

View Article and Find Full Text PDF

Kisspeptin control of hypothalamus-pituitary-ovarian functions.

Vitam Horm

January 2025

Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar pradesh, India.

The discovery of Kisspeptin (Kiss) has opened a new direction in research on neuroendocrine control of reproduction in vertebrates. Belonging to the RF amide family of peptides, Kiss and its cognate receptor Gpr54 (Kissr) have a long and complex evolutionary history. Multiple forms of Kiss and Kissr are identified in non-mammalian vertebrates, with the exception of birds, and monotreme mammals.

View Article and Find Full Text PDF

The hypothalamus is the gray matter of the ventral portion of the diencephalon. The hypothalamus is the higher center of the autonomic nervous system and is involved in the regulation of various homeostatic mechanisms. It also modulates respiration by facilitating the respiratory network.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is one of the primary causes of mortality and disability, with arterial blood pressure being an important factor in the clinical management of TBI. Spontaneously hypertensive rats (SHRs), widely used as a model of essential hypertension and vascular dementia, demonstrate dysfunction of the hypothalamic-pituitary-adrenal axis, which may contribute to glucocorticoid-mediated hippocampal damage. The aim of this study was to assess acute post-TBI seizures, delayed mortality, and hippocampal pathology in SHRs and normotensive Sprague Dawley rats (SDRs).

View Article and Find Full Text PDF

A novel model of central precocious puberty disease: Paternal MKRN3 gene-modified rabbit.

Animal Model Exp Med

January 2025

Guangdong Medical Laboratory Animal Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.

Background: Makorin ring finger protein 3 gene (MKRN3) gene mutation is the most common genetic cause of central precocious puberty (CPP) in children. Due to the lack of ideal MKRN3-modified animal model (MKRN3-modified mice enter puberty only 4-5 days earlier than normal mice), the related research is limited.

Methods: Therefore, the MKRN3-modified rabbit was developed using CRISPR (clustered regularly interspaced short palindromic repeats) gene editing technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!