A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of machine learning models for predicting acute kidney injury following donation after cardiac death liver transplantation. | LitMetric

Application of machine learning models for predicting acute kidney injury following donation after cardiac death liver transplantation.

Hepatobiliary Pancreat Dis Int

Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China. Electronic address:

Published: June 2021

Background: Acute kidney injury (AKI) is a common complication after liver transplantation (LT) and is an indicator of poor prognosis. The establishment of a more accurate preoperative prediction model of AKI could help to improve the prognosis of LT. Machine learning algorithms provide a potentially effective approach.

Methods: A total of 493 patients with donation after cardiac death LT (DCDLT) were enrolled. AKI was defined according to the clinical practice guidelines of kidney disease: improving global outcomes (KDIGO). The clinical data of patients with AKI (AKI group) and without AKI (non-AKI group) were compared. With logistic regression analysis as a conventional model, four predictive machine learning models were developed using the following algorithms: random forest, support vector machine, classical decision tree, and conditional inference tree. The predictive power of these models was then evaluated using the area under the receiver operating characteristic curve (AUC).

Results: The incidence of AKI was 35.7% (176/493) during the follow-up period. Compared with the non-AKI group, the AKI group showed a remarkably lower survival rate (P < 0.001). The random forest model demonstrated the highest prediction accuracy of 0.79 with AUC of 0.850 [95% confidence interval (CI): 0.794-0.905], which was significantly higher than the AUCs of the other machine learning algorithms and logistic regression models (P < 0.001).

Conclusions: The random forest model based on machine learning algorithms for predicting AKI occurring after DCDLT demonstrated stronger predictive power than other models in our study. This suggests that machine learning methods may provide feasible tools for forecasting AKI after DCDLT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hbpd.2021.02.001DOI Listing

Publication Analysis

Top Keywords

machine learning
12
learning models
8
acute kidney
8
kidney injury
8
donation cardiac
8
cardiac death
8
liver transplantation
8
aki
8
aki group
8
group aki
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!