Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Enrichment or over-representation analysis is a common method used in bioinformatics studies of transcriptomics, metabolomics, and microbiome datasets. The key idea behind enrichment analysis is: given a set of significantly expressed genes (or metabolites), use that set to infer a smaller set of perturbed biological pathways or processes, in which those genes (or metabolites) play a role. Enrichment computations rely on collections of defined biological pathways and/or processes, which are usually drawn from pathway databases. Although practitioners of enrichment analysis take great care to employ statistical corrections (e.g., for multiple testing), they appear unaware that enrichment results are quite sensitive to the pathway definitions that the calculation uses.
Results: We show that alternative pathway definitions can alter enrichment p-values by up to nine orders of magnitude, whereas statistical corrections typically alter enrichment p-values by only two orders of magnitude. We present multiple examples where the smaller pathway definitions used in the EcoCyc database produces stronger enrichment p-values than the much larger pathway definitions used in the KEGG database; we demonstrate that to attain a given enrichment p-value, KEGG-based enrichment analyses require 1.3-2.0 times as many significantly expressed genes as does EcoCyc-based enrichment analyses. The large pathways in KEGG are problematic for another reason: they blur together multiple (as many as 21) biological processes. When such a KEGG pathway receives a high enrichment p-value, which of its component processes is perturbed is unclear, and thus the biological conclusions drawn from enrichment of large pathways are also in question.
Conclusions: The choice of pathway database used in enrichment analyses can have a much stronger effect on the enrichment results than the statistical corrections used in these analyses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7967953 | PMC |
http://dx.doi.org/10.1186/s12864-021-07502-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!