In this paper, a representative of chain-oxidized sterols, 25-hydroxycholesterol (25-OH), has been studied in Langmuir monolayers mixed with the sphingolipids sphingomyelin (SM) and ganglioside (GM) to build lipid rafts. A classical Langmuir monolayer approach based on thermodynamic analysis of interactions was complemented with microscopic visualization of films (Brewster angle microscopy), surface-sensitive spectroscopy (polarization modulation-infrared reflection-absorption spectroscopy) and theoretical calculations (density functional theory modelling and molecular dynamics simulations). Strong interactions between 25-OH and both investigated sphingolipids enabled the formation of surface complexes. As known from previous studies, 25-OH in pure monolayers can be anchored to the water surface with a hydroxyl group at either C(3) or C(25). In this study, we investigated how the presence of additional strong interactions with sphingolipids modifies the surface arrangement of 25-OH. Results have shown that, in the 25-OH/GM system, there are no preferences regarding the orientation of the 25-OH molecule in surface complexes and two types of complexes are formed. On the other hand, SM enforces one specific orientation of 25-OH: being anchored with the C(3)-OH group to the water. The strength of interactions between the studied sphingolipids and 25-OH versus cholesterol is similar, which indicates that cholesterol may well be replaced by oxysterol in the lipid raft system. In this way, the composition of lipid rafts can be modified, changing their rheological properties and, as a consequence, influencing their proper functioning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8086845 | PMC |
http://dx.doi.org/10.1098/rsif.2021.0050 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!