Compelling evidence is presented that sub-micron picoplankton shape, internal structure and orientation in combination leads to a disproportionate enhancement of differential forward scatter compared with differential side scatter when analyzed with a flow cytometer. Theoretical evidence is provided which results in an order of magnitude amplification in the forward scatter direction, with little or no change in the side scatter: this discounts the possibility of "doublets" caused by multiple particles simultaneously present in the laser beam. Observational evidence from progressively finer filtered seawater samples shows up to three orders of magnitude enhancement in the forward scatter direction and sizes of Prochlorococcus close to that reported in the literature (0.61 ± 0.17 µm). It therefore seems likely that flow cytometrically observed "bi-modal size distributions" of Prochlorococcus are instead the manifestation of intra-population differences in shape (spherical - prolate with preferential alignment) and internal structure (homogenous - heterogenous).

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.413576DOI Listing

Publication Analysis

Top Keywords

forward scatter
16
internal structure
12
sub-micron picoplankton
8
picoplankton shape
8
side scatter
8
scatter direction
8
scatter
6
shape orientation
4
orientation internal
4
structure combined
4

Similar Publications

Superconductivity in infinite-layer nickelates has stirred much research interest, to which questions regarding the nature of superconductivity remain elusive. A critical leap forward to address these intricate questions is through the growth of high-crystallinity infinite-layer nickelates, including the "parent" phase. Here, we report the synthesis of a high-quality thin-film nickelate, NdNiO.

View Article and Find Full Text PDF

To enhance the growth of the cyanobacterium Synechococcus elongatus, the present study conducted direct screening for cyanobacterium growth-promoting bacteria (CGPB) using co-cultures. Of the 144 strains obtained, four novel CGPB strains were isolated and phylogenetically identified: Rhodococcus sp. AF2108, Ancylobacter sp.

View Article and Find Full Text PDF

Objective: This study aims to evaluate the efficacy of wearable physiology and movement sensors in identifying a spectrum of challenging behaviors, including self-injurious behavior (SIB), in children and teenagers with autism spectrum disorder (ASD) in real-world settings.

Approach: We utilized a long-short-term memory (LSTM) network with features derived using the wavelet scatter transform to analyze physiological biosignals, including electrodermal activity and skin temperature, alongside three-dimensional movement data captured via accelerometers. The study was conducted in naturalistic environments, focusing on participants' daily activities.

View Article and Find Full Text PDF

Fast STEM image simulation in low-energy transmission electron microscopy by the accurate Chen-van-Dyck multislice method.

Micron

December 2024

Pico Electron Microscopy Center, Innovation Institute for Ocean Materials Characterization Technology, Center for Advanced Studies in Precision Instruments, Hainan University, Haikou, Hainan 570228, China; Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou, Hainan 570228, China. Electronic address:

The Chen-van-Dyck (CVD) formulation as a rigorous numerical solution to the Schrödinger equation has been demonstrated being the only accurate multislice method for calculating diffraction and imaging in low-energy transmission electron microscopy. The CVD formulation not only considers the forward scattering effects but also includes the backscattering effects. However, since its numerical computation has to be performed in real-space, the CVD method may suffer from divergence and inefficiency in computing time, especially when used for low-energy scanning transmission electron microscopy (STEM) image simulation.

View Article and Find Full Text PDF

Mitochondria are semi-autonomous organelles containing their own DNA (mtDNA), which is replicated independently of nuclear DNA (nDNA). While cell cycle arrest halts nDNA replication, mtDNA replication continues. In , flow cytometry enables semi-quantitative estimation of mtDNA levels by measuring the difference in signals between cells lacking mtDNA and those containing mtDNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!