In the area of fiber-optic sensors (FOSs), the past decade witnessed great efforts to challenge the thermal-noise-level sensing resolution for passive FOS. Several attempts were reported claiming the arrival of thermal-noise-level resolution, while the realization of thermal-noise-level resolution for passive FOSs is still controversial and challenging. In this paper, an ultrahigh-resolution FOS system is presented with a sensing resolution better than existing high-resolution passive FOSs. A fiber Fabry-Perot interferometer as the sensing element is interrogated with an ultra-stable probe laser by using the Pound-Drever-Hall technique. Both strain and temperature measurements are carried out to validate the performance of the sensor. The measured noise floor agrees with the theoretical thermal noise level very well.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.415611DOI Listing

Publication Analysis

Top Keywords

strain temperature
8
sensing resolution
8
resolution passive
8
thermal-noise-level resolution
8
passive foss
8
resolution
5
resonant fiber-optic
4
fiber-optic strain
4
temperature sensor
4
sensor achieving
4

Similar Publications

The red pigment was recovered from the S. phaeolivaceus GH27 isolate, which was molecularly identified using 16S rRNA gene sequencing and submitted to GenBank as OQ145635.1.

View Article and Find Full Text PDF

Optimization and characterization studies of poultry waste valorization for peptone production using a newly Egyptian Bacillus subtilis strain.

AMB Express

January 2025

Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, P.O. Box 68, Cairo, 11241, Egypt.

Valorization of poultry waste is a significant challenge addressed in this study, which aimed to produce cost-effective and sustainable peptones from poultry waste. The isolation process yielded the highly potent proteolytic B.subtilis isolate P6, identified through 16S rRNA gene sequencing to share 94% similarity with the B.

View Article and Find Full Text PDF

In this study, Allium sativum, garlic, was selected to isolate endophytic bacteria and to evaluate the antimicrobial, antiviral, antioxidant, and cytotoxic activities of their produced metabolites followed by identification of the biosynthetic gene cluster of the antimicrobial metabolites using Oxford Nanopore Technology (ONT). Two bacterial isolates, C6 and C11, were found to have a broad-spectrum antagonistic effect against four standard microbial strains and were molecularly identified using 16 S ribosomal RNA sequence analysis and deposited in a local culture collection as B. velezensis CCASU-C6, and B.

View Article and Find Full Text PDF

Analysis of mechanical properties and energy evolution mechanism of frozen calcareous clay under multi-factor interaction.

Sci Rep

January 2025

The Fourth Engineering Co., LTD, China Railway Fourth Bureau, Hefei, 230012, People's Republic of China.

Research investigating the complex mechanical properties and energy evolution mechanisms of frozen calcareous clay under the influence of multiple factors is crucial for optimizing the artificial ground freezing method in shaft sinking, thereby enhancing construction quality and safety. In this study, a four-factor, four-level orthogonal test was devised, taking into account temperature, confining pressure, dry density, and water content. The complex nonlinear curvilinear relationship between deviatoric stress, volume strain, and axial strain of frozen calcareous clay under different interaction levels was analyzed.

View Article and Find Full Text PDF

Aerobic chemoorganotrophic planctomycetes of the genus Schlesneria colonize a wide spectrum of freshwater ecosystems. The only described species of this genus, S. paludicola, is represented by ellipsoid-shaped, moderately acidophilic bacteria isolated from acidic peat bogs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!