A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tapered fiber radiation sensor based on Ce/Tb:YAG crystals for remote γ-ray dosimetry. | LitMetric

AI Article Synopsis

  • A novel tapered fiber-optic radiation sensor (TFRS) using cerium and terbium co-doped YAG scintillation crystals has been successfully developed, showcasing effective integration into silica glass cladding.
  • The TFRS exhibits low optical fiber loss (0.14 dB/cm), significantly better than the YAG crystal's loss (1.59 dB/cm), allowing efficient light coupling.
  • It demonstrates strong luminescence under various excitations with a response to γ-rays that is four times higher than standard plastic scintillation fiber sensors, indicating its potential for precise and stable remote radiation detection.

Article Abstract

A novel tapered fiber-optic radiation sensor (TFRS) based on cerium (Ce) and terbium (Tb) co-doped YAG scintillation crystals is demonstrated for the first time. Using the CO laser-heated method, a Ce/Tb:YAG crystal is well embedded into silica glass cladding without any cracks. The scintillation light emitted from the YAG scintillation crystal can be directly coupled into the derived silica optical fiber by the tapered region. The loss of the derived optical fiber is 0.14 dB/cm, which is one order of magnitude lower than the 1.59 dB/cm of the YAG crystal in the TFRS. Subsequently, strong photo- and radio-luminescence of Tb (D→F) ions in TFRS are achieved under ultraviolet light and high-energy ray excitation, respectively. In particular, a prominent remote radiation response of the TFRS is presented under excitation by γ-rays through fusion splicing with multimode optical fibers. The response is approximately four times larger than that of a plastic scintillation fiber (BCF-12) sensor. Furthermore, the results possess high stability as well as a good linearity between the radiation dose rate and the response intensity. The TFRS in combination with an all-silica fiber system is a promising candidate for remote radiation detection.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.413822DOI Listing

Publication Analysis

Top Keywords

radiation sensor
8
yag scintillation
8
optical fiber
8
remote radiation
8
radiation
5
tfrs
5
tapered fiber
4
fiber radiation
4
sensor based
4
based ce/tbyag
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!