Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A novel tapered fiber-optic radiation sensor (TFRS) based on cerium (Ce) and terbium (Tb) co-doped YAG scintillation crystals is demonstrated for the first time. Using the CO laser-heated method, a Ce/Tb:YAG crystal is well embedded into silica glass cladding without any cracks. The scintillation light emitted from the YAG scintillation crystal can be directly coupled into the derived silica optical fiber by the tapered region. The loss of the derived optical fiber is 0.14 dB/cm, which is one order of magnitude lower than the 1.59 dB/cm of the YAG crystal in the TFRS. Subsequently, strong photo- and radio-luminescence of Tb (D→F) ions in TFRS are achieved under ultraviolet light and high-energy ray excitation, respectively. In particular, a prominent remote radiation response of the TFRS is presented under excitation by γ-rays through fusion splicing with multimode optical fibers. The response is approximately four times larger than that of a plastic scintillation fiber (BCF-12) sensor. Furthermore, the results possess high stability as well as a good linearity between the radiation dose rate and the response intensity. The TFRS in combination with an all-silica fiber system is a promising candidate for remote radiation detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.413822 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!