Thin-film lithium niobate (TFLN) modulators are expected to be an ideal solution to achieve a super-wide modulation bandwidth needed by the next-generation optical communication system. To improve the performance, especially to reduce the driving voltage, we have carried out a detailed design of the TFLN push-pull modulator by calculating 2D maps of the optical losses and V for different ridge waveguide depths and electrode gaps. Afterwards the modulator with travelling wave electrodes was fabricated through i-line photolithography and then characterized. The measured V for a modulator with 5-mm modulation arm length is 3.5 V, corresponding to voltage-length product of 1.75 V·cm, which is the lowest among similar modulators as far as we know. And the measured electro-optic response has a 3-dB bandwidth beyond 40 GHz, which is the limitation of our measurement capability. The detailed design, fabrication and measurement results are presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.414250 | DOI Listing |
Molecules
December 2024
College of Mechanical and Electronic Engineering, Tarim University, Alar 843300, China.
Adv Sci (Weinh)
January 2025
College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
Photonic manipulation of large-capacity data with the advantages of high speed and low power consumption is a promising solution for explosive growth demands in the era of post-Moore. A well-developed lithium-niobate-on-insulator (LNOI) platform has been widely explored for high-performance electro-optic (EO) modulators to bridge electrical and optical signals. However, the photonic waveguides on the x-cut LNOI platform suffer serious polarization-mode conversion/coupling issues because of strong birefringence, making it hard to realize large-scale integration.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China.
The integration of a photodetector that converts optical signals into electrical signals is essential for scalable integrated lithium niobate photonics. Two-dimensional materials provide a potential high-efficiency on-chip detection capability. Here, we demonstrate an efficient on-chip photodetector based on a few layers of MoTe on a thin film lithium niobate waveguide and integrate it with a microresonator operating in an optical telecommunication band.
View Article and Find Full Text PDFSci Rep
January 2025
Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100, Cyberjaya, Selangor, Malaysia.
In recent decades, poorly insulated windows have increased the energy consumption of heating and cooling systems, thus contributing to excessive carbon dioxide emissions and other related pollution issues. From this perspective, the electrochromic (EC) windows could be a tangible solution as the indoor conditions are highly controllable by these smart devices even at a low applied voltage. Literally, vanadium pentoxide (VO) is a renowned candidate for the EC application due to its multicolor appearance and substantial lithium insertion capacity.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-Gu, Seongnam-Si 13120, Gyeonggi-do, Republic of Korea.
Si anode materials are promising candidates for next-generation Li-ion batteries (LIBs) because of their high capacities. However, expansion and low conductivity result in rapid performance degradation. Herein, we present a facile one-pot method for pyrolyzing polystyrene sulfonate (PSS) polymers at low temperatures (≤400 °C) to form a thin carbonaceous layer on the silicon surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!