A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Compact, UAV-mounted hyperspectral imaging system with automatic geometric distortion rectification. | LitMetric

A highly compact hyperspectral imager with an automatic geometric rectification function is developed in this study, which can be mounted on a UAV for ultra-wide range hyperspectral imaging. For better application, the system can provide visible light image transmission and hyperspectral imaging in the real-time mode. A specific design is proposed to allow the visible light camera and hyperspectral camera to share the same telescope optical path, making the system have a high integration level with a total mass of 1.9 kilograms. Thanks to the sharing-optical-path design, the field of view (FOV), frame rate, and spatial resolution are modified the same between the visible light camera and hyperspectral camera. As a result, the geometric rectification is easily performed, and repeated rectifications are eliminated to improve the imaging efficiency. A FOV of 40 degrees in the frame direction and 26 degrees in the flight direction are realized with a focal length of 13mm, providing a large spectral range from 400 nm to 1000 nm and an excellent spectral resolution of 2.5 nm. An automatic geometric rectification workflow is presented and verified in experiments, which can improve the geometric rectification of hyperspectral images in the presence of low-quality UAV navigation data through the incorporation of frame images. Experimental results show that the relative accuracy of geometric rectification is less than 2 pixels when applying the algorithm to our system dataset.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.412853DOI Listing

Publication Analysis

Top Keywords

geometric rectification
20
hyperspectral imaging
12
automatic geometric
12
visible light
12
light camera
8
camera hyperspectral
8
hyperspectral camera
8
hyperspectral
7
geometric
6
rectification
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!