Helical core fibers (HCFs) suffer from low coupling efficiency and unavoidable excitation of higher order modes below the cutoff wavelength because of a core tilt with respect to the symmetry axis of the cladding. We propose an effective way of increasing the coupling efficiency to a HCF by untwisting its beginning section in a hydrogen flame. The proposed solution provides also a control over the excitation of higher order modes in HCFs and can be applied in splicing as well as in a free-space launching configuration. We experimentally demonstrate that by using the proposed method, the coupling efficiency between a SMF-28 and HCF can be increased to the level reachable for straight fibers, which is limited only by a modal fields mismatch. We also present detailed numerical and analytical studies of the coupling efficiency between a HCF and SMF versus the pitch distance in the partially untwisted input section of the HCF, which takes into account fundamental and higher-order modes.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.413358DOI Listing

Publication Analysis

Top Keywords

coupling efficiency
20
increasing coupling
8
excitation higher
8
higher order
8
order modes
8
efficiency hcf
8
coupling
5
efficiency
5
method increasing
4
efficiency helical-core
4

Similar Publications

Monitoring deep wounds is challenging but necessary for high-quality medical treatment. Current methodologies for deep wound monitoring are typically limited to indirect clinical symptoms or costly non-real-time imaging diagnosis. Herein, a smart system is proposed that enables in situ monitoring of deep wounds' status through a semi-implantable device composed of 2 seamlessly connected functional components: 1) the well-designed, microchannel-structured sampling needles that efficiently and conveniently collect samples from deep wound anatomical locations, and 2) the multiplex biochemical testing compartment that facilitates the immediate and persistent detection of multiple biochemical indicators based on a color image processing software accessible to a conventional smartphone.

View Article and Find Full Text PDF

Chemoenzymatic C,C-Bond Forming Cascades by Cryptic Vanadium Haloperoxidase Catalyzed Bromination.

Org Lett

December 2024

Biomimetic Catalysis, Catalysis Research Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany.

Inspired by natural cryptic halogenation in -bond formation, this study developed a synthetic approach combining biocatalytic bromination with transition-metal-catalyzed cross-coupling. Using the cyanobacterial VHPO, a robust and sustainable bromination-arylation cascade was created. Genetic modifications allowed enzyme immobilization, enhancing the compatibility between biocatalysis and chemocatalysis.

View Article and Find Full Text PDF

The faithful production of primordial germ cells (PGCs) in vitro opens a wide range of novel applications in reproductive biology and medicine. However, the reproducibility of PGCs culture conditions across different laboratories or breeds remains a challenge. Therefore, it is necessary to research the molecular dynamics that lead to the gradual establishment of cultured PGCs lines network.

View Article and Find Full Text PDF

As the substrate, tobacco waste extract (TWE) can produce bacterial cellulose (BC), a biobased material. However, nicotine inhibits BC production (adding 0.8 g/L nicotine to the HS medium had a negative effect on BC synthesis) and needs to be removed.

View Article and Find Full Text PDF

Donor-acceptor (D-A) conjugated polymers have been widely reported as promising photocatalysts for organic conversion. However, achieving excellent photocatalytic performance still relies on the rational design of molecular structures and the careful selection of appropriate building blocks. In this study, we designed two D-A type conjugated porous polymers (CPPs) using 2,7,12-tribromo-5,5,10,10,15,15-hexamethyl-10,15-dihydro-5H-diindeno[1,2-a:1',2'-c]fluorene (Tx) as the donor unit and two 1,3,5-triazine-based derivatives, namely 2,4,6-tri(thiophen-2-yl)-1,3,5-triazine (TTT) and 2,4,6-triphenyl-1,3,5-triazine (TPT), as the acceptor units.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!