Scattering generally worsens the condition of inverse problems, with the severity depending on the statistics of the refractive index gradient and contrast. Removing scattering artifacts from images has attracted much work in the literature, including recently the use of static neural networks. S. Li et al. [Optica5(7), 803 (2018)10.1364/OPTICA.5.000803] trained a convolutional neural network to reveal amplitude objects hidden by a specific diffuser; whereas Y. Li et al. [Optica5(10), 1181 (2018)10.1364/OPTICA.5.001181] were able to deal with arbitrary diffusers, as long as certain statistical criteria were met. Here, we propose a novel dynamical machine learning approach for the case of imaging phase objects through arbitrary diffusers. The motivation is to strengthen the correlation among the patterns during the training and to reveal phase objects through scattering media. We utilize the on-axis rotation of a diffuser to impart dynamics and utilize multiple speckle measurements from different angles to form a sequence of images for training. Recurrent neural networks (RNN) embedded with the dynamics filter out useful information and discard the redundancies, thus quantitative phase information in presence of strong scattering. In other words, the RNN effectively averages out the effect of the dynamic random scattering media and learns more about the static pattern. The dynamical approach reveals transparent images behind the scattering media out of speckle correlation among adjacent measurements in a sequence. This method is also applicable to other imaging applications that involve any other spatiotemporal dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.412890DOI Listing

Publication Analysis

Top Keywords

scattering media
16
recurrent neural
8
neural network
8
reveals transparent
8
objects scattering
8
neural networks
8
arbitrary diffusers
8
phase objects
8
scattering
7
network reveals
4

Similar Publications

Background: Neuropilin-1 (NRP1) is a transmembrane protein involved in surface receptor complexes for a variety of extracellular signals. NRP1 expression in human cancers is associated with prominent angiogenesis and advanced progression stage. However, the molecular mechanisms underlying NRP1 activity in the tumor microenvironment remain unclear.

View Article and Find Full Text PDF

Proteomic analysis of Trichoderma harzianum secretome and their role in the biosynthesis of zinc/iron oxide nanoparticles.

Sci Rep

January 2025

Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.

The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.

View Article and Find Full Text PDF

This study aims to explore the development of natural bio-based amphiphilic block copolymers for drug delivery applications. We investigated block copolymers derived from tamarind seed xyloglucan and solanesol, focusing on their synthesis, structural analysis, aqueous self-assembly, and drug encapsulation. Specifically, xyloglucan hydrolysate segments with number-average degrees of polymerization (DPs) of between 8 and 44 (XOS, XMS, XMS, XMS, and XMS) were used as the hydrophilic blocks, whereas plant-sourced solanesol was selected as the hydrophobic segment.

View Article and Find Full Text PDF

Effective bulk and mass densities of randomly distributed coated cylinders in fluid.

J Acoust Soc Am

January 2025

Laboratoire Ondes et Milieux Complexes LOMC UMR CNRS 6294, Université Le Havre Normandie, 75 rue Bellot, Le Havre, France.

Inhomogeneous media made of random configurations of coated circular cylinders are considered. The effective properties-wave number, mass density, bulk modulus-are discussed and illustrated. The effects of the volume fraction of the scatterers and surrounding fluid are also examined.

View Article and Find Full Text PDF

Genetically engineered immune cells hold great promise for treating immune-related diseases, but their development is hindered by technical challenges, primarily related to nucleic acid delivery. Polyethylenimine (PEI) is a cost-effective transfection agent, yet it requires significant optimization for effective T cell transfection. In this study, we comprehensively fine-tuned the characteristics of PEI/DNA nanoparticles, culture conditions, cellular physiology, and transfection protocols to enhance gene delivery into T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!